

# **Operational Applications of Signalized Offset T-Intersections - Final Report**

Institute for Transportation Research and Education (ITRE) North Carolina State University

Christopher M. Cunningham, P.E., P.I. Shannon Warchol, P.E., Co-P.I. Juwoon Baek Guangchuan Yang, Ph.D.

NCDOT Project 2019-31

**July 2020** 

NCDOT 2019-31 Project Report

This page is intentionally blank.

North Carolina Department of Transportation Research Project No. 2019-31



# **Operational Applications of Signalized Offset T-Intersections**



Christopher M. Cunningham Shannon E. Warchol Juwoon Baek Guangchuan Yang

July 2020

| 1. Report No.<br>FHWA/NC/2019-31                                                                                                                                                                  | 2. Government Accession No.                                                                                                                                                                                                                                                                       | 3. Recipient's Catalog No.                                                                                                                                                                                                                                                                                                             |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 4. Title and Subtitle<br>Operational Applications of Signa                                                                                                                                        | 5. Report Date<br>July 22, 2020                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                   | 6. Performing Organization Code                                                                                                                                                                                                                                                                                                        |  |  |  |
| 7. Author(s)<br>Chris Cunningham, MSCE, P.E., S<br>Baek, Guangchuan Yang, Ph.D.                                                                                                                   | Shannon Warchol, MSCE, P.E., Juwoon                                                                                                                                                                                                                                                               | 8. Performing Organization Report No.                                                                                                                                                                                                                                                                                                  |  |  |  |
| 9. Performing Organization Name<br>Institute for Transportation F                                                                                                                                 |                                                                                                                                                                                                                                                                                                   | 10. Work Unit No. (TRAIS)                                                                                                                                                                                                                                                                                                              |  |  |  |
| North Carolina State Univers<br>Centennial Campus Box 8601<br>Raleigh, NC                                                                                                                         |                                                                                                                                                                                                                                                                                                   | 11. Contract or Grant No.                                                                                                                                                                                                                                                                                                              |  |  |  |
| 12. Sponsoring Agency Name and A<br>North Carolina Department of<br>Research and Analysis Group<br>104 Fayetteville Street                                                                        | of Transportation                                                                                                                                                                                                                                                                                 | 13. Type of Report and Period Covered<br>Final Report<br>August 2017 – July 2020                                                                                                                                                                                                                                                       |  |  |  |
| Raleigh, North Carolina 2760                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                 | 14. Sponsoring Agency Code 2019-31                                                                                                                                                                                                                                                                                                     |  |  |  |
| Supplementary Notes:                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| fourth leg. When a need for a leg. Common options include                                                                                                                                         | fourth leg is established, NCDOT mu                                                                                                                                                                                                                                                               | levelopable land occupying the vacar<br>st determine the optimal location of th<br>ection as well as moving the leg up o<br>uration.                                                                                                                                                                                                   |  |  |  |
| impacts of the offset T-inte<br>microsimulation-based operat<br>and nine intersection geometric<br>length and delay were emplo<br>associated measures, this rese<br>optimal intersection geometry | rsection versus the 4-leg intersection<br>ional study over five development score<br>c designs, which resulted in 90 combi-<br>yed as measurements of effectiveness<br>earch provided practice-ready guideling<br>for each specific development project<br>or new developments given its signific | ge regarding the operational and safet<br>on. Then, it presented results from<br>enarios, two demand to capacity ratio<br>inations of simulation scenarios. Queu<br>ss. Based on the simulation effort an<br>nes to NCDOT on the selection of th<br>. In general, this research recommende<br>cant benefits in terms of reducing delay |  |  |  |
| 17. Key Words<br>Offset T-Intersection, Signal S                                                                                                                                                  | 18. Distribution Statem                                                                                                                                                                                                                                                                           | lent                                                                                                                                                                                                                                                                                                                                   |  |  |  |

| Offset T-Intersection, Signal Sc<br>Operation, Optimal Spacing, M | ,                                    |                  |           |
|-------------------------------------------------------------------|--------------------------------------|------------------|-----------|
| 19. Security Classif. (of this report)                            | 20. Security Classif. (of this page) | 21. No. of Pages | 22. Price |
| Unclassified                                                      | Unclassified                         | 91               |           |

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

#### Disclaimer

The contents of this document reflect the views of the authors and are not necessarily the views of the Institute for Transportation Research and Education or North Carolina State University. The authors are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the North Carolina Department of Transportation or the Federal Highway Administration at the time of publication. This report does not constitute a standard, specification, or regulation.

#### Acknowledgments

The research team thanks the North Carolina Department of Transportation for supporting and funding this project. We are particularly grateful to the Steering and Implementation Committee members and key stakeholders for the exceptional guidance and support they provided throughout this project:

Joseph E. Hummer Chang Baek D. D. "Bucky" Galloway Nicholas C. Lineberger Tim Nye Michael P. Reese John Kirby (PM)

## **Executive Summary**

NCDOT maintains a significant number of T intersections with developable land occupying the vacant fourth leg. When need for a fourth leg is established, NCDOT must determine the optimal location of the leg. Common options include adding the leg to the existing intersection as well as moving the leg up or downstream of the existing intersection to create an offset T-intersection.

This report documents the comparisons of the operational impacts of offset T-intersections versus 4-leg intersections. A VISSIM microsimulation tool was adopted for assessing the performance of both vehicle and non-vehicle traffic under various traffic volume and intersection geometric features; queue length and delay were employed as measurements of effectiveness (MOEs).

This research presented five Origin-Destination (OD) pairs to simulate different real-world development scenarios, including:

- Superstore: mix of pass by and intentional trips
- Hybrid Gas Station: majority pass by trips
- Residential AM: no pass by trips
- Residential PM: no pass by trips
- Realign: a general case that realigns the distribution of traffic flow.

Based on the simulated MOEs, this research provided practice-ready guidelines to NCDOT on the selection of the optimal intersection geometry for each specific development project, described as follows:

#### Superstore Development Scenario

• This research effort recommends an LR offset T-intersection with a stem spacing longer than 600 ft.

#### Hybrid Gas Station Development Scenario

• This research effort recommends an LR offset T-intersection; when possible, a spacing that is longer than 300 ft. is recommended.

#### Residential Area Development Scenario

• This research effort recommends that a LR offset T-intersection employed with a medium spacing (e.g., around 600 ft.) under a low-to-medium v/c ratio condition. However, when the v/c ratio is high, an LR offset T-intersection with a longer spacing (e.g., longer than 600 ft.) is recommended.

#### Realign Scenario

• This research effort recommends an LR offset T-intersection with a relatively longer spacing (i.e., longer than 900 ft.) for the Realign scenario, particularly when v/c ratio is larger than 0.7.

Although the LR offset T-intersection appears to provide the most optimal solution for the development scenarios tested, this research did not consider a RL geometry with left turn lanes which each extended the full distance between the stems, instead focusing on a geometry in which the combined length of the left turn lanes was equal to the distance between the stems. On one hand, this allowed equivalent use of right-of-way to be considered in both RL and LR scenarios; however, it should be noted that, should

additional right-of-way be available, extended left turn lanes may improve queue storage concerns making the RL offset T a viable intersection configuration under many scenarios. Besides, the research found that pedestrian and bicycle delay depend on signal phasing scheme with pedestrian delay increase with the increase of cycle length.

## **Table of Contents**

| Executive Summaryiii                           |
|------------------------------------------------|
| Table of Contentsv                             |
| List of Tables vii                             |
| List of Figures viii                           |
| 1. Introduction                                |
| 1.1 Background1                                |
| 1.2 Objectives and Scope2                      |
| 2. State-of-the-Practice                       |
| 2.1 Effects on Operation and Safety2           |
| 2.2 Existing Design Guidelines                 |
| 2.3 Summary                                    |
| 3. Experiment Design                           |
| 3.1 Intersection Configurations4               |
| 3.1.1 Intersection Layout                      |
| 3.1.2 Spacing Considerations5                  |
| 3.1.3 Number of Lanes7                         |
| 3.1.4 Bicycle Lanes and Pedestrian Crosswalks7 |
| 3.2 Traffic Flow Scenario                      |
| 3.2.1 Origin-Destination pairs8                |
| 3.2.2 Trip Generation                          |
| 3.2.3 Volume to Capacity Level9                |
| 3.2.4 Summary of Turning Movement Volume9      |
| 3.3 Signal Phasing Scheme11                    |
| 3.3.1 LR Offset Layout                         |
| 3.3.2 RL Offset Layout                         |
| 3.4 Performance Measures15                     |
| 4. Development of Simulation Models            |
| 5. Simulation Results17                        |
| 5.1 Superstore                                 |
| 5.1.1 Anticipated Service Impact               |
| 5.1.2 Queue Length19                           |
| 5.1.3 Delay                                    |

| Ę           | 5.2 Hybrid Gas Station                                      | 22 |
|-------------|-------------------------------------------------------------|----|
|             | 5.2.1 Anticipated Service Level                             | 22 |
|             | 5.2.2 Queue Length                                          | 23 |
|             | 5.2.3 Delay                                                 | 25 |
| Ę           | 5.3 Residential Area                                        | 26 |
|             | 5.3.1 Anticipated Service Impact                            | 26 |
|             | 5.3.2 Queue Length                                          | 28 |
|             | 5.3.3 Delay                                                 | 31 |
| Ę           | 5.4 Realign                                                 | 33 |
|             | 5.4.1 Anticipated Service Impact                            | 33 |
|             | 5.4.2 Queue Length                                          | 34 |
|             | 5.4.3 Delay                                                 | 36 |
| Ę           | 5.5 Bicycle and Pedestrian Delay                            | 37 |
|             | 5.5.1 Bicycle Delay                                         | 37 |
|             | 5.5.2 Pedestrian Delay                                      | 41 |
| 6. ľ        | Movement Based SPF                                          | 43 |
| 7. (        | Conclusions and Recommendations                             | 46 |
| 8. F        | References                                                  | 49 |
| 9. <i>i</i> | Appendices                                                  | 51 |
| ļ           | Appendix A. ITE Vehicle Trip Generation                     | 51 |
| ļ           | Appendix B. VISSIM Vehicle Inputs                           | 53 |
| ļ           | Appendix C. Signal Timing Plans                             | 54 |
| ŀ           | Appendix D. Simulation Scenarios                            | 56 |
| ŀ           | Appendix E. Queue Length Simulation Results                 | 59 |
| ļ           | Appendix F. Delay Simulation Results                        | 69 |
| 1           | Appendix E. Analysis of Variance (ANOVA) of Recommendations | 79 |

## List of Tables

| Table 3-1. Length of Lanes                                                                        | 7     |
|---------------------------------------------------------------------------------------------------|-------|
| Table 3-2. Number of Lanes                                                                        | 7     |
| <b>Table 3-3.</b> Turning Movement Volume for Three Intersection Layouts (v/c = 0.7)              | 10    |
| Table 3-4.         Turning Movement Volume for Three Intersection Layouts (v/c = 0.9)             | 11    |
| <b>Table 5-1.</b> Description of Anticipated Service Impacts for each Performance Measure         | 18    |
| Table 5-2. Operational Performance of Various Intersection Layouts for the Superstore Develop     | oment |
| Scenario                                                                                          | 19    |
| <b>Table 5-3</b> . Operational Performance of Various Intersection Layouts for Hybrid Gas Station | 23    |
| Table 5-4. Operational Performance of Various Intersection Layouts for Residential Area Develop   | oment |
| Scenario AM Period                                                                                | 27    |
| Table 5-5. Operational Performance of Various Intersection Layouts for Residential Area Develop   | oment |
| Scenario PM Period                                                                                | 28    |
| Table 5-6. Operational Performance of Various Intersection Layouts for Realign Scenario           | 34    |
| <b>Table 6-1.</b> Daily Turning Movement Volume for Three Intersection Layouts (v/c = 0.7)        | 44    |
| Table 6-2. Daily Turning Movement Volume for Three Intersection Layouts (v/c = 0.9)               | 45    |
| <b>Table 6-3.</b> Predicted Number of Crashes Using Movement-Based SPF                            | 45    |

## List of Figures

| Figure 1-1. Right-Left (R-L) and Left-Right (L-R) offset designs1                                    |
|------------------------------------------------------------------------------------------------------|
| Figure 3-1. Geometrical Layouts of Three Intersection Forms                                          |
| Figure 3-2. Illustration of Negative and Positive Spacings                                           |
| Figure 3-3. Illustration of bicycle lane and pedestrian crossings                                    |
| Figure 3-4. Illustration of Movements at LR Offset T-Intersection12                                  |
| Figure 3-5. Phasing diagram of LR split phasing scheme12                                             |
| Figure 3-6. Phasing diagram of 3CLead phasing scheme13                                               |
| Figure 3-7. Phasing diagram of 3CLag phasing scheme13                                                |
| Figure 3-8. Illustration of Movements at RL Offset T-Intersection14                                  |
| Figure 3-9. Phasing diagram of T3Lag phasing scheme14                                                |
| Figure 3-10. Phasing diagram of 4CSplit phasing scheme15                                             |
| Figure 4-1. Illustration of VISSIM Microsimulation Models17                                          |
| Figure 5-1. Queue Length under Various Spacing Levels for Superstore Development Scenario20          |
| Figure 5-2. Movement-based Vehicle Delay under Various Spacing Levels for the Superstore Development |
| Scenario                                                                                             |
| Figure 5-3. Queue Length under Various Spacing Levels for Hybrid Gas Station Development Scenario24  |
| Figure 5-4. Movement-based Vehicle Delay under Various Spacing Levels for Hybrid Gas Station         |
| Development Scenario                                                                                 |
| Figure 5-5. Queue Length under Various Spacing Levels for Residential Area Development AM            |
| Scenario                                                                                             |
| Figure 5-6. Queue Length under Various Spacing Levels for Residential Area Development PM            |
| Scenario                                                                                             |
| Figure 5-7. Movement-based Vehicle Delay under Various Spacing Levels for Residential Area           |
| Development Scenario AM Period                                                                       |
| Figure 5-8. Movement-based Vehicle Delay under Various Spacing Levels for Residential Area           |
| Development Scenario PM Period                                                                       |
| Figure 5-9. Queue Length under Various Spacing Levels for Realign Scenario for Realign Scenario      |
| Figure 5-10. Movement-based Vehicle Delay under Various Spacing Levels for Realign Scenario37        |
| Figure 5-16.         Comparison of Bicycle Delay for Main Street Through Movements                   |
| Figure 5-17. Comparison of Bicycle Delay for Minor Street Through Movements                          |
| Figure 5-18. Comparison of Bicycle Delay for Main Street to Minor Street Movements40                 |
| Figure 5-19. Comparison of Bicycle Delay for Minor Street to Main Street Movements41                 |
| Figure 5-20. Comparison of Pedestrian Delay for Various Movements42                                  |

## 1. Introduction

## 1.1 Background

The NCDOT Traffic Management Unit (TMU) receives requests from local governments and developers to add fourth legs at existing signalized T intersections. Requests for additional legs can occur along arterials within suburban areas, in the downtown of rural towns, or at commercial centers along highways. The TMU has been reluctant to approve such requests, believing that creating a signalized offset-T may prove more successful both from a safety and operational standpoint.

An offset T-intersection (also known as staggered intersection) is an at-grade road intersection where a conventional four-leg intersection is split into two three-leg T intersections to reduce the number of conflicts and improve traffic flow (*Rodegerdts et al., 2004; Hughes et al., 2010*). With a 4-leg intersection, traffic on any approach would negotiate both opposing and cross traffic; however, in comparison, with a T intersection, the opposing approach is eliminated on the minor approach. Therefore, having two separate T intersections means traffic on a minor approach only has to encounter potential traffic conflicts from the major crossing approaches.

Offset T-intersections exist in two forms, and the operations of minor street users (motor vehicles, pedestrians, and bicycles) are different for each form. The forms, shown in Figure 1, are referred to as "Right-Left" ("RL") and "Left-Right" ("LR") so named for the path vehicles travel from one minor road to the other while crossing the major road. For the remainder of this report, it is assumed the uninterrupted street is the major street while the offset street is the minor street.

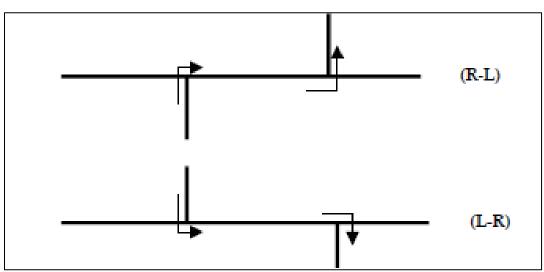



Figure 1-1. Right-Left (R-L) and Left-Right (L-R) offset designs (Bared and Kaisar, 2001)

Typically, offset T-intersections have stop control on the minor approaches when traffic demand is relatively low. When traffic demand is higher, signals may be installed at one or both offset T-intersections to control traffic. The key to offset T-intersections is the actual offset, or distance from one intersection to another; a shorter distance increases the likelihood of both intersections behaving as one. In addition,

depending on the proximity of each T intersection, the signals may be optimized differently to provide the best progression from intersection to intersection.

## **1.2 Objectives and Scope**

The objective of this research is to provide NCDOT with objective, scientific guidance on how offset Tintersections compare operationally to four-leg intersections for vehicles, pedestrians, and bicyclists. In particular, this project will inform NCDOT of the volume, origin-destination (OD), spacing, and signal timing variations for which the LR or RL offset T-intersection provides less delay than four-leg intersections.

## 2. State-of-the-Practice

### 2.1 Effects on Operation and Safety

In comparison with a standard 4-leg two-lane intersection, an offset T-intersection reduces the number of conflicts points from 32 to 18, indicating that an offset T-intersection has the potential to reduce the risk of collisions and improve the operational efficiency. To date, there have been a number of studies that have investigated the effects of offset T-intersection on traffic operation and safety.

In the 1980s, Mahalel et al. (1986) evaluated the safety and operational benefits of two types of unsignalized staggered intersections. The authors concluded that the LR design had greater reductions in injury crashes than the RL designs – primarily due to the reduced number of conflict points and speed of minor road traffic. However, no comparison was made with the 4-way standard intersection. In comparison, the RL designs had higher capacity and less delay due to the availability of lower critical gaps. Nevertheless, this research also pointed out that a staggered intersection, either LR or RL design, does cause additional traffic interference to the major road traffic, and the amount of interferences increases with the distance between the two T intersections.

Kulmula (1997) compared the safety performance of 4-way standard intersections and offset Tintersections in Finland. It was found that the crash rates were 1.3-1.4 times higher at 4-way intersections than offset T-intersections. Later, Monsere (2001) conducted a worldwide review on the safety performance of rural offset T-intersections. In general, this research indicated that crash rates at T intersections are usually lower than those of 4-way cross intersections but are dependent on volumes and other factors. Similarly, Bared and Kaisar (2001) synthesized the advantages of offset T-intersections and concluded that converting a standard rural 2-lane TWSC intersection to an offset T-intersection is expected to bring 20 to 30 percent reductions in total crashes and 40 percent reductions in fatal/injury crashes. Ceder and Eldar (2002) developed an analytical model to investigate the safety effects of staggered intersections. Results showed that converting a standard intersection to a staggered intersection could decrease the number of crashes by up to 50%, and the number of crashes decreases with the increase of stagger distance. Elvik et al. (2009) summarized the effects of various roadway safety measures. It was found that four-leg intersections have twice the crash rate of three-leg intersections. For signalized intersections, the injury crash rate at a T intersection was between 33% and 66% lower than a standard four-leg intersection. A second meta-analysis was conducted to determine the impact of converting to a staggered T intersection on the number of crashes. One study which contributed to the meta-analysis suggested that the LR stagger reduced overall crashes by 4% while the RL increased crashes by 7%. Nevertheless, it is necessary to point out that this result was not statistically significant.

Recently, Barua et al. (2010) studied rural undivided highways in Alberta, Canada and found given a crash occurred, the risk of fatality increased when the crash occurred at an offset intersection (without regard to signalization) and that signalizing the intersection reduced the risk of fatality. Chia et al. (2013) developed a safe system assessment framework to assess the safety effectiveness of staggered T intersections in terms of the degree of alignment with the objective of zero death and serious injuries. Generally speaking, it was found that a staggered T intersection meets a low to moderate level of alignment with the safety objective. Ma et al. (2014) employed a microsimulation modeling approach to investigate the efficiency and safety of the staggered intersection with a two-way left-turn lane. Simulation results showed that the average delay decreases nonlinearly with an increase in the stagger distance. On the other hand, however, this research found that staggered intersections have a significantly higher number of traffic conflicts than standard intersections, especially when the left-turn ratio is high.

For traffic operation performance, Bared and Kaisar (2001) found that in urban areas, for a typical intersection with a combined ADT over 14,000 vehicles and a directional split of 0.6, converting a 2-lane signalized intersection to a LR offset T-intersection is expected to decrease travel time by 5 to 20 seconds per vehicle compared to a four-leg intersection. Cai et al. (2016) pointed out that at a signalized staggered intersection, a long lost time is expected for the minor road through traffic to make sure that traffic spillbacks are handled appropriately. With this concern, this research effort developed a signal phasing scheme for the left-right type staggered intersection based on a sorting strategy using an early release from the upstream intersection of the coordinated pair on the through movement. Through microsimulation modeling, this research found that in comparison with the conventional staggered intersection signal control method, the proposed signal phasing reduced average delay and the maximum queue length by up to 29.7% and 26.9%, respectively.

## 2.2 Existing Design Guidelines

In terms of the design of offset T-intersections, Stark (1994) suggested intersections with offsets around 36 meters had lower crash rates than standard four-leg intersections or intersections of greater offsets; however, intersections with small offsets were more hazardous than four-leg intersections. Bared and Kaisar (2001) summarized a couple of general traffic flow warrants for the conversion of standard intersections to offset T-intersections. The authors pointed out that when traffic flow is greater than 10,000 ADT with 10-percent traffic on the minor road, the offset T-intersection may not be cost-effective. Ceder and Eldar (2002) developed an analytical model to determine the optimal stagger distance between the two adjacent unsignalized T intersections. This research first pointed out that the RL design outperforms LR design; and further suggested that the optimal stagger distance should be determined based on blocking queues, passing probabilities, budget limitations, and safety thresholds. In general, a longer stagger distance is expected to shorten the total delay.

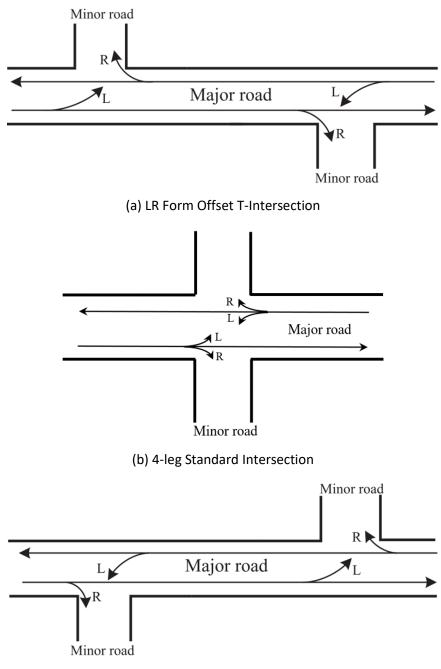
The Delaware Department of Transportation (*DelDOT, 2009*) determined the ideal distance between intersections should be at least 350 feet. If two intersections are less than 350 feet, certain restrictions should be applied, such as implementing turn restrictions on certain movements and/or prohibiting pedestrian crossings at certain locations in and around the intersection.

Chia et al. (2013) investigated the operational and design factors that need to be considered when planning and designing rural offset T-intersections, which mainly included major road traffic volume, intersection capacity, stagger type and distance, land availability, and costs. The authors recommended a rural offset T-intersection should meet the following requirements: low major-road traffic volume, minor-

road approach and vegetation do not obstruct sight distance, a LR stagger type with a stagger distance greater than 15 m, and have advance warning signs on the major road.

Ma et al. (2014) investigated the impacts of traffic volume, ratio of left turn vehicles, and stagger distance on the performance of staggered intersections. The objective was to provide transportation engineers and planners with recommendations on the implementation for staggered intersections and the appropriate stagger distances that should be considered. Through microsimulation, this research found that staggered intersections with a stagger distance shorter than 200 m showed few advantages in terms of average delay over a cross intersection. In addition, this research recommended that when determining the acceptable stagger distance range, it is necessary to take into account the actual traffic volume and left-turn ratio as well as safety concerns that could arise based on geometry and traffic volumes.

### 2.3 Summary


This literature review summarized that in current practice there have been a number of studies which compared the safety performance between offset-T and four-leg intersections; however, very little literature exist regarding operational comparisons. The literature which did exist mostly provided conjectures as opposed to experiment-based conclusions. Further, there are open questions regarding the optimal signal timing strategies for the offset T-intersection including if one or two controllers should be used, and if the former, how the signal phasing should be designed. More informed signalization strategies could greatly enhance the operational findings noted in this literature. In addition, none of the existing literature revealed the impacts of pedestrian and bicycle operations at offset T-intersections.

## **3. Experiment Design**

### **3.1 Intersection Configurations**

#### 3.1.1 Intersection Layout

As mentioned in the "Background" section, an offset T-intersection may be in an LR form or a RL form. In addition, since the purpose of this research is to assist NCDOT with determining the optimal location of the fourth leg to be added to an existing T intersection, this research also considered the traditional standard (4-leg) intersection form. The geometrical layouts of the three intersection forms are illustrated in Figure 3-1.



(c) RL Form Offset T-Intersection

Figure 3-1. Geometrical Layouts of Three Intersection Forms

#### **3.1.2 Spacing Considerations**

An offset T-intersection would result in a higher volume of turning traffic at all minor street approaches, which tends to call for longer turn bays (right-turn and/or left-turn). In addition, when a major street has two or more lanes, minor street through vehicles may need to make one or more lane-changing maneuver(s) which could increase the requirement of spacing length. With these considerations, the

research team tested four spacing levels between the two legs (i.e., ranging from 300 ft to 1200 ft with an increment of 300 ft). In this report, any reference to a negative spacing implies an LR layout while a positive spacing implies an RL layout. For the traditional standard intersection form, this research assumed the spacing between two legs is 0 ft. A graphical illustration of the spacings is presented in Figure 3-2 below.

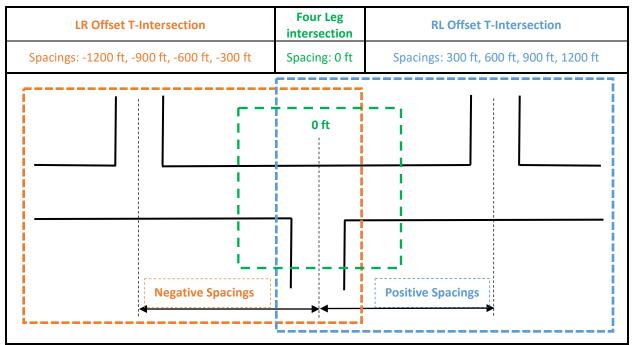



Figure 3-2. Illustration of Negative and Positive Spacings

In terms of the length of lanes, the research team assumed an exclusive left turning lane is provided on the mainline for the RL design with sufficient length to prevent turning vehicles from blocking through traffic. For the RL and LR offset T-intersections, this research maintained a right-of-way no wider than five total lanes. Therefore, for the RL offset, left turn lanes did not overlap (i.e. a two-way left turn lane) between the intersections but were placed back-to-back. This also provides the safest use of the median based on prior research (*Phillips et al., 2004*). The allocation of space for the length of exclusive left-turn lanes on the major street for the RL scenario is as follows:

- + 300 ft and + 600 ft spacing levels: the lengths of left-turn pocket are distributed proportionally based on the left turn volumes of eastbound and westbound with the following constraints:
  - The distributed pocket length must be at least 1/3 of total spacing
- + 900 ft and + 1200 ft spacing levels: the lengths of left-turn pocket are evenly distributed (50:50)

For the LR scenarios, the left turn pockets are a constant 500 feet as there is not a shared area between the two minor streets like the RL scenario. An overview of the length of exclusive lanes is presented in Table 3-1 below.

| Туре         |           | Offset<br>e Spacing) | 4         | - Leg                   | RL Offset<br>(Positive Spacing) |                   |  |
|--------------|-----------|----------------------|-----------|-------------------------|---------------------------------|-------------------|--|
|              | Left Lane | <b>Right Lane</b>    | Left Lane | <b>Right Lane</b>       | Left Lane                       | <b>Right Lane</b> |  |
| Major Street | 500 ft    | 200 ft               | 500 ft    | Shared                  | Depends                         | 200 ft            |  |
| Minor Street | 750 ft    | Full Length          | 720 ft    | 720 ft<br>/ Full length | 750 ft                          | Full Length       |  |

Table 3-1. Length of Lanes

If sufficient right-of-way exists, the left turn lanes for the RL design may overlap resulting in more queue storage space; however, for this research effort we do not consider that design as the right-of-way availability was assumed to be constrained equally.

### 3.1.3 Number of Lanes

This research assumed a common rule of thumb that an exclusive left-turn lane should accommodate up to 300 vehicles per hour. Based on this assumption, if approaching left-turn volume is less than 300 vehicles per hour, the number of exclusive left-turn lanes would be one lane; otherwise, the number of exclusive lanes would be set as two lanes. For the right-turn movement on the major street, this research assigned one exclusive turn lane for LR and RL case to allow the through movement on the major street to proceed undisturbed by right-turn queues. The number of exclusive lanes in this research is shown in Table 2 below. The 4-leg standard intersection has a shared through and right turn lane due to the low volume of right turns.

| Туре                       | (Ne  | LR Offset<br>gative Spac | ing)  |      | 4 - Leg |        | RL Offset<br>(Positive Spacing) |         |       |  |  |
|----------------------------|------|--------------------------|-------|------|---------|--------|---------------------------------|---------|-------|--|--|
|                            | Left | Through                  | Right | Left | Through | Right  | Left                            | Through | Right |  |  |
| Major Street               | 1    | 2                        | 1     | 1    | 2       | Shared | 1                               | 2       | 1     |  |  |
| Northbound Minor<br>Street | 2    | n/a                      | 2     | 2    | Shared  | 2      | 2                               | n/a     | 2     |  |  |
| Southbound Minor<br>Street | 1    | n/a                      | 1     | 1    | Shared  | 1      | 1                               | n/a     | 1     |  |  |

Table 3-2. Number of Lanes

### **3.1.4 Bicycle Lanes and Pedestrian Crosswalks**

To accommodate multiple modes at offset T-intersections, this research also evaluated the performance of bicycle lanes and pedestrian crosswalks. For bicycle lanes, this research designed exclusive bicycle lanes for all approaches (including both offset T-intersections and the standard four-leg intersection); each bicycle lane is designed as one-way which aligns with the direction of vehicle travel lanes. In case an exclusive right-turn lane exists, the bicycle lane will be placed between the through lane and right turn lane. In terms of pedestrian crosswalks, for a four-leg intersection, pedestrian crosswalks are designed for all the directions; for offset T-intersections, the design of pedestrian crosswalks also accommodated in all the directions; however, pedestrian crosswalks were not modeled at locations where they conflict with

the left-turn traffic from minor streets (the LR condition) and were instead only assumed on the outside of the minor in this case.

An illustration of the lane configurations for the bicycle and pedestrian paths for a LR offset configuration is presented in Figure 3-3, where the gray layers represent driving lanes, red lines represent bicycle lanes, and green lines represent pedestrian crossings. These paths are also representative of the crossing patterns used for RL offset.

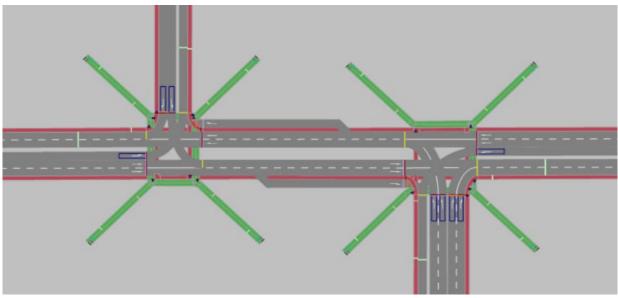



Figure 3-3. Illustration of bicycle lane and pedestrian crossings

## 3.2 Traffic Flow Scenario

#### **3.2.1 Origin-Destination pairs**

This research effort presented five OD pairs to simulate different real-world development scenarios for the newly developed fourth leg, listed as follows:

- Superstore: mix of pass by and intentional trips
- Hybrid Gas Station: majority pass-by trips
- Residential AM: no pass-by trips
- Residential PM: no pass-by trips
- Realign: a general case that realigns the distribution of traffic flow, allowing traffic to use the new fourth leg as a route to further downstream locations along the leg

#### 3.2.2 Trip Generation

For the superstore, hybrid gas station and residential development scenarios, the Institute for Transportation Engineers (ITE) Trip Generation Manual *(ITE, 2017)* was used to estimate the induced traffic volume generated by the developments. The ITE vehicle trip generation rates used in this research effort for each development scenario (i.e., Superstore, Hybrid Gas Station, Residential AM, and Residential PM) are presented in Appendix A.

It is necessary to point out that for the 5th case (realign scenario), through movements on minor streets were increased in comparison with the other four cases. For the realign scenario, 25 percent of the total approach volume on minor streets was a through movement; in comparison, 80 percent of total approach volume on major streets was a through movement.

#### 3.2.3 Volume to Capacity Level

This research considered two volume-to-capacity (v/c) ratio levels when developing models: 1) a v/c ratio of 0.9 to represent heavy traffic demand periods, such as morning and evening peak hours during workdays and 2) a v/c ratio of 0.7 was used to represent normal workday traffic demand scenarios. The v/c ratios were measured relative to a four-legged intersection.

In addition, this research effort assumed that traffic flow on the major street is not evenly distributed. During the morning peak period, it was assumed 60 percent of the total traffic travel westbound (40 percent eastbound traffic). In comparison, during the evening peak period, 60 percent of the total traffic travel was eastbound (40 percent westbound traffic). It was also assumed that volumes on the minor leg were half of the volumes on the major leg.

#### 3.2.4 Summary of Turning Movement Volume

Finally, turning movement volumes for the three intersections for each development scenario were estimated, as documented in Table 3-3 (v/c=0.7) and Table 3-4 (v/c=0.9), respectively. These turning volume scenarios represent various movement combinations expected either: over the course of a day, for various land uses, or for various functional classifications of the intersecting roadway. Then, based on the calculated turning volume, detailed vehicle inputs for each VISSIM model were determined, as attached in Appendix B. In this report, traffic volume means the total number of vehicles entering an approach of the intersection; vehicle static route refers to the proportions of turning movement (i.e., left-turn, through, and right-turn) among the input traffic volume at this approach.

|                         | Turning Movement Volumes (vph) |      |           |          |         |      |     |      |           |                    |      |      |  |
|-------------------------|--------------------------------|------|-----------|----------|---------|------|-----|------|-----------|--------------------|------|------|--|
| 4-Leg Layout            | NB                             |      |           |          | SB      |      |     | EB   |           |                    | WB   |      |  |
|                         | LT                             | Thru | RT        | LT       | Thru    | RT   | LT  | Thru | RT        | LT                 | Thru | RT   |  |
| Hybrid Gas Station (PM) | 213                            | 29   | 320       | 179      | 30      | 120  | 178 | 789  | 169       | 113                | 526  | 119  |  |
| Superstore (PM)         | 146                            | 101  | 219       | 268      | 104     | 179  | 264 | 542  | 116       | 77                 | 361  | 176  |  |
| Residential AM          | 394                            | 19   | 263       | 45       | 56      | 68   | 15  | 649  | 139       | 208                | 973  | 22   |  |
| Residential PM          | 237                            | 63   | 355       | 44       | 37      | 30   | 76  | 877  | 188       | 125                | 585  | 50   |  |
| Realign                 | 165                            | 138  | 248       | 165      | 92      | 110  | 110 | 881  | 110       | 73                 | 588  | 73   |  |
|                         |                                |      | Left Inte | rsectior | 1       |      |     | F    | Right Int | ersectio           | n    |      |  |
| LR Layout               | S                              | В    | E         | В        | W       | /В   | N   | В    | E         | В                  | W    | /B   |  |
|                         | LT                             | RT   | LT        | Thru     | Thru    | RT   | LT  | RT   | Thru      | RT                 | LT   | Thru |  |
| Hybrid Gas Station (PM) | 209                            | 120  | 178       | 959      | 739     | 148  | 242 | 320  | 969       | 199                | 113  | 645  |  |
| Superstore (PM)         | 372                            | 179  | 264       | 658      | 507     | 277  | 247 | 219  | 809       | 220                | 77   | 537  |  |
| Residential AM          | 101                            | 68   | 15        | 788      | 1367    | 41   | 412 | 263  | 694       | 195                | 208  | 995  |  |
| Residential PM          | 81                             | 30   | 76        | 1065     | 821     | 113  | 300 | 355  | 921       | 225                | 125  | 635  |  |
| Realign                 | 257                            | 110  | 110       | 991      | 753     | 211  | 303 | 248  | 1047      | 202                | 73   | 661  |  |
| # of lanes              | 1                              | 1    | 1         | 2        | 2       | 1    | 2   | 2    | 2         | 1                  | 1    | 2    |  |
|                         |                                |      | Left Inte | rsectior | ction R |      |     |      |           | Right Intersection |      |      |  |
| RL Layout               | N                              | IB   | E         | В        | W       | /В   | S   | В    | E         | В                  | W    | /В   |  |
|                         | LT                             | RT   | RT        | Thru     | Thru    | LT   | LT  | RT   | Thru      | LT                 | RT   | Thru |  |
| Hybrid Gas Station (PM) | 213                            | 349  | 968       | 169      | 143     | 646  | 179 | 150  | 207       | 1109               | 639  | 119  |  |
| Superstore (PM)         | 146                            | 320  | 805       | 116      | 181     | 540  | 268 | 283  | 365       | 761                | 438  | 176  |  |
| Residential AM          | 394                            | 281  | 664       | 139      | 265     | 1041 | 45  | 124  | 34        | 911                | 1181 | 22   |  |
| Residential PM          | 237                            | 418  | 952       | 188      | 162     | 614  | 44  | 67   | 139       | 1232               | 710  | 50   |  |
| Realign                 | 165                            | 386  | 991       | 110      | 165     | 698  | 165 | 202  | 248       | 1129               | 661  | 73   |  |
| # of lanes              | 2                              | 2    | 1         | 2        | 2       | 1    | 1   | 1    | 2         | 1                  | 1    | 2    |  |

**Table 3-3.** Turning Movement Volume for Three Intersection Layouts (v/c = 0.7)

|                         |     |      |           | Т        | urning N | Aoveme | nt Volu | nes (vpł | ı)        |          |      |      |  |
|-------------------------|-----|------|-----------|----------|----------|--------|---------|----------|-----------|----------|------|------|--|
| 4-Leg Layout            | NB  |      |           |          | SB       |        |         | EB       |           |          | WB   |      |  |
|                         | LT  | Thru | RT        | LT       | Thru     | RT     | LT      | Thru     | RT        | LT       | Thru | RT   |  |
| Hybrid Gas Station (PM) | 288 | 29   | 432       | 179      | 30       | 120    | 178     | 1067     | 229       | 152      | 711  | 119  |  |
| Superstore (PM)         | 250 | 101  | 376       | 268      | 104      | 179    | 264     | 928      | 199       | 133      | 619  | 176  |  |
| Residential AM          | 520 | 19   | 347       | 45       | 56       | 68     | 15      | 857      | 184       | 275      | 1285 | 22   |  |
| Residential PM          | 311 | 63   | 467       | 44       | 37       | 30     | 76      | 1154     | 247       | 165      | 769  | 50   |  |
| Realign                 | 212 | 177  | 319       | 212      | 118      | 142    | 142     | 1133     | 142       | 94       | 755  | 94   |  |
|                         |     |      | Left Inte | rsection | Ì        |        |         | F        | Right Int | ersectio | n    |      |  |
| LR Layout               | S   | В    | E         | В        | W        | /B     | N       | IB       | E         | В        | v    | /B   |  |
|                         | LT  | RT   | LT        | Thru     | Thru     | RT     | LT      | RT       | Thru      | RT       | LT   | Thru |  |
| Hybrid Gas Station (PM) | 209 | 120  | 178       | 1295     | 999      | 148    | 317     | 432      | 1246      | 259      | 152  | 830  |  |
| Superstore (PM)         | 372 | 179  | 264       | 1127     | 869      | 277    | 351     | 376      | 1196      | 303      | 133  | 794  |  |
| Residential AM          | 101 | 68   | 15        | 1041     | 1806     | 41     | 539     | 347      | 902       | 240      | 275  | 1308 |  |
| Residential PM          | 81  | 30   | 76        | 1401     | 1081     | 113    | 374     | 467      | 1198      | 284      | 165  | 820  |  |
| Realign                 | 330 | 142  | 142       | 1275     | 968      | 271    | 390     | 319      | 1346      | 260      | 94   | 850  |  |
| # of lanes              | 1   | 1    | 1         | 2        | 2        | 1      | 2       | 2        | 2         | 1        | 1    | 2    |  |
|                         |     |      | Left Inte | rsection | )        |        |         | F        | Right Int | ersectio | n    |      |  |
| RL Layout               | N   | В    | E         | В        | W        | /B     | S       | В        | E         | В        | v    | /B   |  |
|                         | LT  | RT   | RT        | Thru     | Thru     | LT     | LT      | RT       | Thru      | LT       | RT   | Thru |  |
| Hybrid Gas Station (PM) | 288 | 461  | 1245      | 229      | 182      | 831    | 179     | 150      | 207       | 1498     | 863  | 119  |  |
| Superstore (PM)         | 250 | 476  | 1192      | 199      | 237      | 797    | 268     | 283      | 365       | 1303     | 751  | 176  |  |
| Residential AM          | 520 | 366  | 872       | 184      | 332      | 1353   | 45      | 124      | 34        | 1204     | 1561 | 22   |  |
| Residential PM          | 311 | 530  | 1230      | 247      | 202      | 799    | 44      | 67       | 139       | 1621     | 934  | 50   |  |
| Realign                 | 212 | 496  | 1275      | 142      | 212      | 897    | 212     | 260      | 319       | 1452     | 850  | 94   |  |
| # of lanes              | 2   | 2    | 1         | 2        | 2        | 1      | 1       | 1        | 2         | 1        | 1    | 2    |  |

**Table 3-4.** Turning Movement Volume for Three Intersection Layouts (v/c = 0.9)

## **3.3 Signal Phasing Scheme**

For the 4-leg intersection, the signal timing process followed the standard signal optimization procedure, where a four-critical (4C) phase signal timing plan was applied, and the Highway Capacity Manual (HCM) method was employed for determining the optimal cycle length. PTV VISTRO's v/c balancing algorithm was used to determine the green spits (*PTV Group, 2020*). Therefore, this section mainly presents the signal phasing schemes for offset T-intersections along with the design of bicycle and pedestrian signals. It was assumed all left turns were protected. Both LR and RL offsets were analyzed with a three critical-phase signal timing plan with coordination of the major through movements. In all cases, this research adopted the PTV VISTRO software package to identify the optimal signal timing schemes for each O/D scenario under a given v/c ratio (*PTV Group, 2020*). The primary reason for choosing VISTRO for generating the optimal signal timing schemes is the flexibility of the controller for custom signal timing schemes as well as the compatibility with the microscopic simulation software used. Cycle lengths of 80 to 130 seconds at intervals of 10 seconds were analyzed. The signal timing parameters for each scenario to be tested in VISSIM microsimulation are attached in Appendix C.

#### 3.3.1 LR Offset Layout

For a LR offset intersection, the research team proposed three phasing schemes to accommodate different spacing levels: split phasing, three-critical phase lead (3CLead) and three-critical phase lag (3CLag), respectively. A graphical illustration of the movements at an LR offset T-intersection is presented in Figure 3-4, where phases 22 and 26 refer to the major street through movements within the stem.

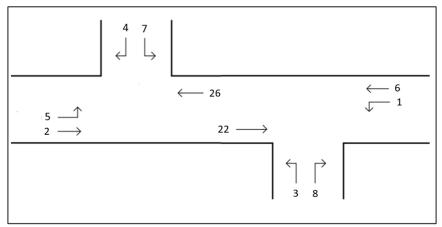
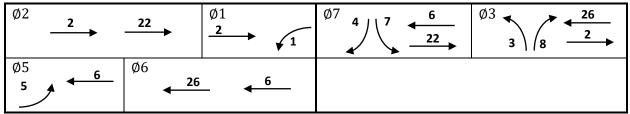
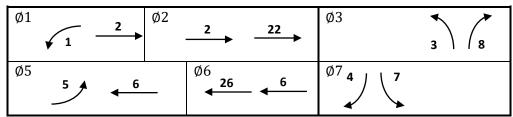
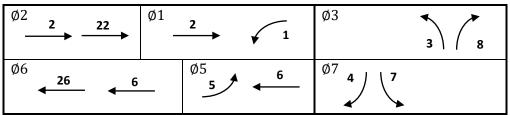




Figure 3-4. Illustration of Movements at LR Offset T-Intersection


In practice, a LR split phasing scheme should utilize lead-lag left-turn phasing for the major street with split phasing for the minor street as this promotes progression when undersaturated (v/c < 1) conditions are present. The phasing diagram for the split phasing scheme is illustrated in Figure 3-5. LR split phasing usually aims at accommodating progression of the westbound through movement (WBT); ideally, the green time of phase 5 (eastbound left-turn movement, EBL) should be less than the travel time of WBT between two intersections. Thus, it is more suitable for scenarios with a heavy WBT demand and a long stem spacing. In this research, the LR split phasing was applied in the following two scenarios: Residential AM with stem lengths of 900 and 1200 feet.



**Figure 3-5.** Phasing diagram of LR split phasing scheme. *Note: Movements between the stems (22 and 26) are shown for the east and west intersections for reference with Figure 3-4.* 


The 3-critical phase left-turn lead phasing scheme (3CLead) utilized at the LR offset T-intersection is depicted in Figure 3-6. This phasing scheme required that the green time of the two major streets left-

turn movements (i.e., Phase 1 WBL, and Phase 5 EBL) be less than the travel time of the major street through movements between the two intersections. Thus, it is more suitable for scenarios with a relatively long stem spacing. In this research, the 3CLead phasing was applied at the following eight scenarios: Superstore, Hybrid Gas Station, Residential PM and Realign with stem lengths of -1200 and -900 feet.



**Figure 3-6.** Phasing diagram of 3CLead phasing scheme. *Note: Movements between the stems (22 and 26) are shown for the east and west intersections for reference with Figure 3-4.* 

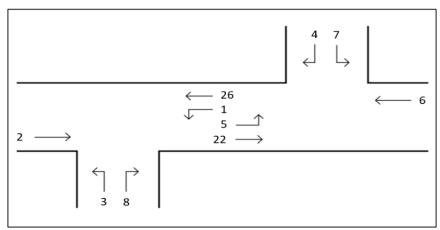
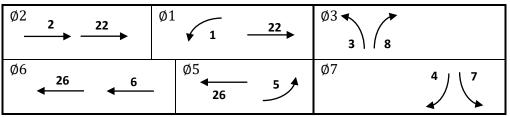
The 3-critical phase LR offset T-intersection left-turn lag phasing scheme (3CLag) is depicted in Figure 3-7. This phasing scheme requires that the green time of the two major street through movements (i.e., Phase 22 EBT, and Phase 26 WBT) to be larger than the travel time of the major street through movements between the two intersections. Thus, it is more suitable for scenarios with a shorter stem spacing. In this research, the 3CLag phasing was applied at the following ten scenarios: Superstore, Hybrid Gas Station, Residential AM, Residential PM and Realign with stem lengths of -600 and -300 feet.

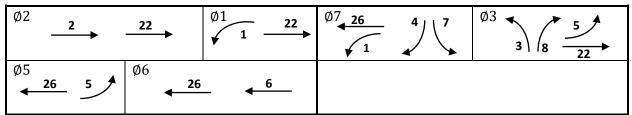


**Figure 3-7.** Phasing diagram of 3CLag phasing scheme. *Note: Movements between the stems (22 and 26) are shown for the east and west intersections for reference with Figure 3-4.* 

### 3.3.2 RL Offset Layout

A graphical illustration of the movements at a RL offset T-intersection are presented in Figure 3-8. Like the LR offset layout, phases 22 and 26 refer to the major street through movements within the stem. Then, this research proposed two phasing schemes to accommodate different spacing levels.



Figure 3-8. Illustration of Movements at RL Offset T-Intersection

Signal timing options for the RL offset intersection include the modification of the Texas 3-Phase (T3Lag) scheme. This option, shown in Figure 3-9 under a one controller scenario, has three critical phases. In Figure 3-8, the mainline left turns are lagged, which allows for the initial queue of minor right turns to proceed under a protected phase (Phases 2 and 5). This reduces potential conflicts of minor right-turning vehicles with pedestrians. This phasing scheme should better accommodate the progression of EBT and WBT movements, particularly when the stem spacing is short. For the RL scenario, this phasing scheme applied to the following ten scenarios: Superstore, Hybrid Gas Station, Residential AM, Residential PM, and Realign with stem lengths of 300 and 600 feet.



**Figure 3-9.** Phasing diagram of T3Lag phasing scheme. *Note: Movements* between the stems (22 and 26) are shown for the east and west intersections for reference with Figure 3-8.

As the offset spacing increases, the likelihood of a minor vehicle being able to turn right onto the major street and then left onto the minor street in one phase decreases. However, the increased offset does allow for increased storage of vehicles. Therefore, for longer stem lengths with the RL offset, the 4-critical phase split phasing (4CSplit) scheme was employed, as illustrated in Figure 3-10. The 4CSplit phasing should accommodate the progression of westbound movements, particularly for long stem spacing scenarios. In this research, the 4CSplit phasing was applied in the following ten scenarios: Superstore, Hybrid Gas Station, Residential AM, Residential PM, and Realign with stem lengths of 900 and 1200 feet.



**Figure 3-10.** Phasing diagram of 4CSplit phasing scheme. *Note: Movements between the stems (22 and 26) are shown for the east and west intersections for reference with Figure 3-8.* 

## **3.4 Performance Measures**

Since the primary focus of this research is traffic operations, two typical measures of effectiveness (queue length and delay) were selected to assess the performance of each scenario and phasing scheme. These are defined in the following sections.

#### Queue Length:

Queue length analysis was conducted for vehicular traffic only. This performance measure aims to investigate the risk of queue spillback of through vehicles from the downstream intersection into the upstream intersection, as well as left-turn movement spillback into through movement lanes under different spacing scenarios.

The impacts of spacing on through movement queue spillback can be estimated as:

• Through movement queue/ Intersection spacing =  $\frac{q_{Through}}{spacing_{TH}}$ 

The impacts of spacing on left-turn traffic spilling back into the through lane(s) can be estimated as:

• Left-turn max queue / LT lane storage =  $\frac{Max q_{LT}}{Storage_{1T}}$ 

#### Delay:

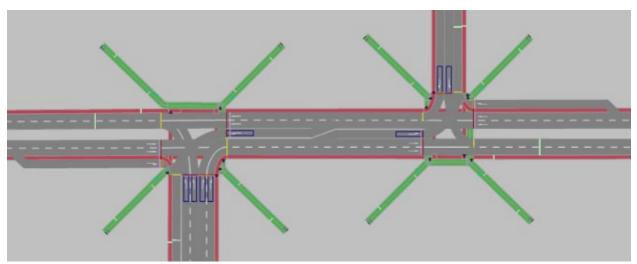
Delay analysis was conducted for all traffic modes (i.e., vehicles, bicycles, and pedestrians). The simulated delays were evaluated by route. The routes were classified into four categories based on the origin and destination (i.e., Main to Main, Minor to Minor, Main to Minor, and Minor to Main, respectively). Turning movements contained by each category are listed as follows:

- Main Street to Main Street: EBT & WBT
- Minor Street to Minor Street: NBT & SBT
- Main Street to Minor Street: EBL, EBR, WBL & WBR
- Minor Street to Main Street: NBL, NHBR, SBL & SBR

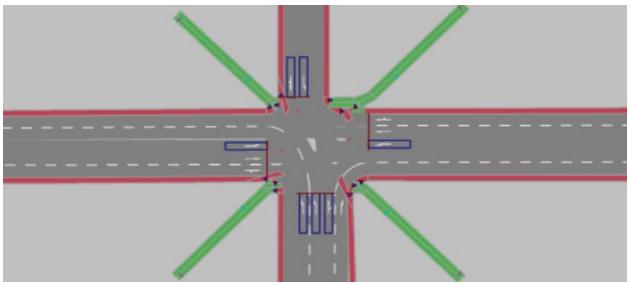
In addition, pedestrian delays were calculated based on the average of the following three crossing maneuvers:

• Ped main street crossing

- Ped minor street crossing
- Ped diagonal crossing (i.e., main/minor street crossing then minor/main street crossing)


It is necessary to point out that for pedestrian traffic, this research only considered pedestrian control delay at each intersection; delay due to the increased travel distance between two intersections was not considered

## 4. Development of Simulation Models


Based on the pre-determined intersection configurations, the microscopic simulation models were developed using the PTV VISSIM software package. A total of 90 simulation scenarios were designed to test the performance of offset T-intersections under various demand levels (i.e., 0.7 and 0.9), O/D patterns (i.e., Residential AM, Residential PM, Hybrid Gas Station, Superstore, and Realign), and spacing levels (i.e., -1200 ft to 1200 ft). A detailed description of the 90 simulation scenarios is attached in Appendix D. An example of the developed LR offset T-intersection, 4-leg standard intersection, and RL offset T-intersection VISSIM models are illustrated in Figure 4-1 a-c. Grey links are vehicle lanes, red links are bicycle lanes, and green links are pedestrian sidewalks. Simulation time was set as 3900 seconds where the first 300 seconds was for system warm-up to allow traffic to get to normal operation, and the remaining 3600 seconds was for data collection. To minimize the potential impact of the stochastic feature of traffic flow on performance measurement, for each simulation scenario this research effort conducted 30 simulation runs with different random seeds.



(a) LR Offset T-Intersection



(b) RL Offset T-Intersection



(c) 4-Leg Standard Intersection

Figure 4-1. Illustration of VISSIM Microsimulation Models

## 5. Simulation Results

This chapter presents graphical comparisons of the simulated queue length and delay results for the five OD patterns. For each OD pattern, this research investigated two v/c ratios and nine spacing levels, which yielded a total of 90 simulation scenarios. For each scenario (i.e., any combination of OD pattern, v/c ratio, and spacing level), a performance measurement result is the average of 30 simulation runs. It is necessary to clarify that for the queue length study, this chapter employed two alternative queue length measures for critical movements: ratio of average queue length divided by spacing (major road through movements), and ratio of the maximum queue length divided by storage (major road left-turn movements, for RL offset only). Details of the simulated queue lengths and delays for each movement are documented in Appendices E and F, respectively.

In addition to the quantitative comparisons of the simulated performance measures, this research effort also qualitatively presented the anticipated service impact for each stem spacing scenario. The anticipated impacts are described in Table 5-1:

| Performance  | Descr                       | iption of Anticipated Service Im                  | pacts                              |
|--------------|-----------------------------|---------------------------------------------------|------------------------------------|
| Measure      | High Impact                 | Medium Impact                                     | Low Impact                         |
| Queue Length | Max. queue length > Storage | Max. queue length > 70% of<br>Storage (< Storage) | Max. queue length < 70% of Storage |
| Delay        | Avg. Delay > 80 sec         | Avg. Delay > 35 sec < 80 sec                      | Avg. Delay < 35 sec                |

**Table 5-1.** Description of Anticipated Service Impacts for each Performance Measure

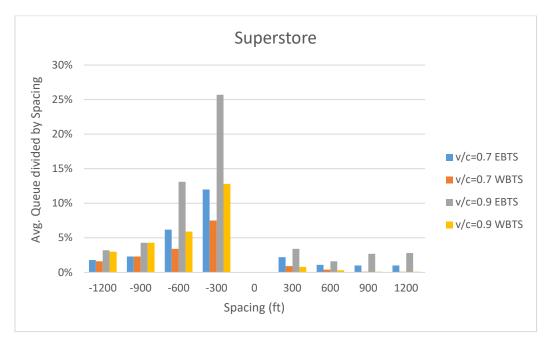
Note: "High Impact" refers to the Highway Capacity Manual (HCM) level-of-service (LOS) F; "Medium Impact" refers to HCM LOS A, B and C.

### 5.1 Superstore

#### 5.1.1 Anticipated Service Impact

Based on the analyses of the simulated performance measures and in accordance with the detailed simulation outputs documented in the Appendices, a qualitative description of the anticipated service impact and movements that may experience significant impacts are presented in Table 5-2. This table is meant to serve as the primary reference for planning level considerations for each of the possible development types. For the Superstore development scenario, using both of the two MOEs, this research effort recommends a LR offset T-intersection with a relatively longer spacing to reduce the impact of the new development. The analysis for each MOE is described in more detail in the following subsections. In addition, this research applied the Analysis of Variance (ANOVA) statistical test on the delay measure of several key movements (i.e., major street through and left turn movements) and verified that the recommended offset T-intersection configurations outperform the regular 4-Leg intersection at 0.05 significance level, as shown in the Table E1 of Appendix E.

| <b>Table 5-2</b> . Operational Performance of Various Intersection Layouts for the Superstore Development |
|-----------------------------------------------------------------------------------------------------------|
| Scenario                                                                                                  |


| v/c = 0.7              |              |                    |                                                       |                    |                                                          |  |  |  |
|------------------------|--------------|--------------------|-------------------------------------------------------|--------------------|----------------------------------------------------------|--|--|--|
| Intersection<br>Layout | Spacing (ft) | Delay              |                                                       | Queue Length       |                                                          |  |  |  |
|                        |              | Anticip.<br>Impact | Movements that May<br>Experience Significant<br>Delay | Anticip.<br>Impact | Movements that May<br>Experience Significant<br>Queueing |  |  |  |
| LR Offset              | -1200        | Medium             | NBT, SBT, EBL, WBL, NBL, SBL                          | Low                | n/a                                                      |  |  |  |
|                        | -900         | Medium             | NBT, SBT, EBL, WBL, NBL, SBL                          | Low                | n/a                                                      |  |  |  |
|                        | -600         | Medium             | SBT, EBL, NBL, SBL                                    | Low                | n/a                                                      |  |  |  |
|                        | -300         | Medium             | SBT, EBL, NBL, SBL                                    | Low                | n/a                                                      |  |  |  |
| 4-Leg                  | 0            | High               | SBL, EBL, WBL, NBL                                    | Low                | n/a                                                      |  |  |  |
| RL Offset              | +300         | Medium             | NBT, SBT, EBL, WBL                                    | High               | EBL, WBL                                                 |  |  |  |
|                        | +600         | Medium             | NBT, SBT, EBL, WBL                                    | High               | EBL                                                      |  |  |  |
|                        | +900         | High               | EBL, NBT, SBT, WBL, NBL, SBL                          | Medium             | n/a                                                      |  |  |  |
|                        | +1200        | High               | EBL, NBT, SBT, WBL, NBL, SBL                          | Low                | n/a                                                      |  |  |  |
| v/c = 0.9              |              |                    |                                                       |                    |                                                          |  |  |  |
| LR Offset              | -1200        | Medium             | NBT, SBT, EBL, WBL, NBL, SBL                          | Low                | n/a                                                      |  |  |  |
|                        | -900         | Medium             | NBT, SBT, EBL, WBL, NBL, SBL                          | Low                | n/a                                                      |  |  |  |
|                        | -600         | Medium             | EBT, NBT, SBT, EBL, NBL, SBL                          | Low                | n/a                                                      |  |  |  |
|                        | -300         | High               | EBT, NBT, SBT, EBL, NBL, SBL                          | Low                | n/a                                                      |  |  |  |
| 4-Leg                  | 0            | High               | EBT, WBT, EBL, WBL, NBL, SBL                          | Low                | n/a                                                      |  |  |  |
| RL Offset              | +300         | Medium             | EBT, NBT, SBT, EBL, WBL, SBL                          | High               | EBL, WBL                                                 |  |  |  |
|                        | +600         | Medium             | NBT, SBT, EBL, WBL, SBL                               | High               | EBL, WBL                                                 |  |  |  |
|                        | +900         | High               | EBL, EBT, NBT, SBT, WBL, NBL,<br>SBL                  | Medium             | EBL                                                      |  |  |  |
|                        | +1200        | High               | EBL, EBT, NBT, SBT, WBL, NBL,<br>SBL                  | Low                | n/a                                                      |  |  |  |

### 5.1.2 Queue Length

Figure 5-1 presents graphical illustrations of the average through movement queue length divided by spacing ratio and maximum left-turn queue length divided by storage. Recall the queue length divided by the spacing ratio is a measure for the through movements which queue between the stems (as opposed to those though movements with queue storage external to the stems), referenced as the eastbound through movement between the stems (EBTS) and the westbound through movement between the stems (WBTS).

From Figure 5-1(a), it was found that for both v/c levels, RL offsets (positive spacings) are generally superior to LR offsets (negative spacings) in terms of avoiding through movement queuing at signals. For LR offset T-intersections, queue length to spacing ratio decreases with the increase of spacing. When

designing an RL offset T-intersection for Superstore development scenario, Figure 5-1(b) shows that an RL offset T-intersection usually requires a longer stem spacing (e.g., > 900 ft) to prevent queue spillback, even if under a relatively low v/c level.



(a) Average Through Movement Queue Length Divided by Spacing



(b) Maximum Left-Turn Movement Queue Length Divided by Storage

**Figure 5-1**. Queue Length under Various Spacing Levels for Superstore Development Scenario. *Note: "EBTS" and "WBTS" refer to the eastbound/westbound through traffic between the stem.* 

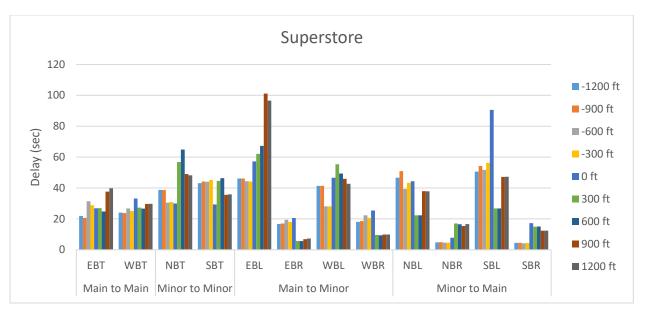
#### 5.1.3 Delay

Figure 5-2 compares vehicle delay under two v/c levels for four movement groups: main street to main street, minor street to minor street, main street to minor street, and minor street to main street, respectively. Major findings from Figures 5-2(a) and 5-2(b) are listed as follows; detailed delay data for the Superstore development under two v/c levels are documented in Tables F1 and F6 of Appendix F, respectively.

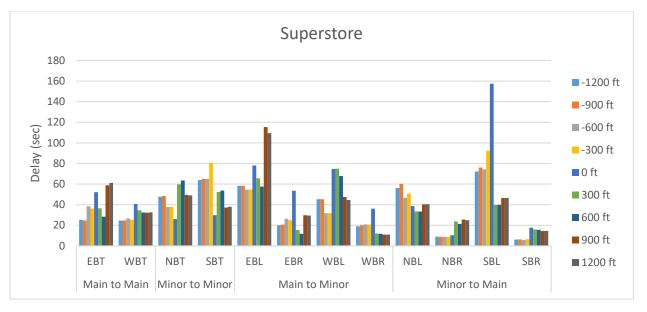
#### Main Street to Main Street

- ✓ LR offset, a longer spacing generally resulted in a lower vehicle delay for EBT movement; the spacing does not show a significant impact on WBT movement
- ✓ RL offset, a shorter spacing generally resulted in a lower delay
- ✓ Both LR and RL offset T-intersections seem superior to a 4-leg intersection under high v/c ratio conditions

#### Minor Street to Minor Street


- ✓ 4-leg intersection has the lowest delay for minor street movements
- ✓ LR offset, delay tends to decrease with increased spacing
- ✓ RL offset, delay increases with increased spacing

#### Main Street to Minor Street


- ✓ Performance depends on movement; right turns have lower delays than left turns
- ✓ For left-turn movements, general LR offset outperforms RL offset
- ✓ RL offset is particularly beneficial to main street right-turn movements

#### Minor Street to Main Street

- ✓ For minor street left turn movements, generally the RL offset is superior to LR offset
- ✓ LR offset is particularly beneficial to minor street right-turn movements









**Figure 5-2**. Movement-based Vehicle Delay under Various Spacing Levels for the Superstore Development Scenario

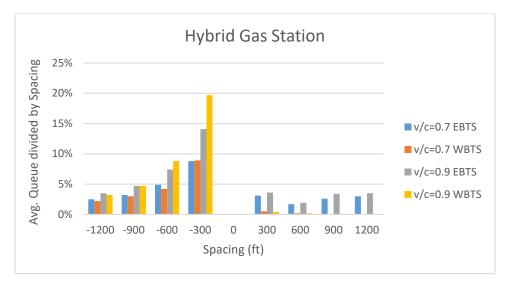
## 5.2 Hybrid Gas Station

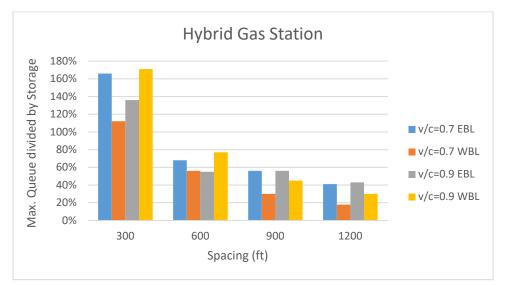
#### 5.2.1 Anticipated Service Level

The qualitative description of the anticipated service impact and movements that may experience significant impacts for the hybrid gas station development scenario are presented in Table 5-3. This

research recommends a LR offset T-intersection for the hybrid gas station development scenario; when possible, a relatively longer spacing is recommended.

The Analysis of Variance (ANOVA) statistical test on the delay measure of major street through and left turn movements are presented in Appendix E2. It was concluded that the recommended offset T-intersection design generally outperforms the 4-leg intersection design expected for the major street left-turn movements under a lower v/c condition (i.e., v/c ratio 0.7).


| v/c = 0.7              |              |                    |                                                       |                    |                                                          |  |  |  |
|------------------------|--------------|--------------------|-------------------------------------------------------|--------------------|----------------------------------------------------------|--|--|--|
| Intersection<br>Layout | Spacing (ft) | Delay              |                                                       | Queue Length       |                                                          |  |  |  |
|                        |              | Anticip.<br>Impact | Movements that May<br>Experience Significant<br>Delay | Anticip.<br>Impact | Movements that May<br>Experience Significant<br>Queueing |  |  |  |
| LR Offset              | -1200        | Medium             | EBL, WBL, NBL, SBL                                    | Low                | n/a                                                      |  |  |  |
|                        | -900         | Medium             | EBL, WBL, NBL, SBL                                    | Low                | n/a                                                      |  |  |  |
|                        | -600         | Medium             | EBL, WBL, SBL                                         | Low                | n/a                                                      |  |  |  |
|                        | -300         | Medium             | EBL, WBL, NBL, SBL                                    | Low                | n/a                                                      |  |  |  |
| 4-Leg                  | 0            | Medium             | EBL, WBL, NBL, SBL                                    | Low                | n/a                                                      |  |  |  |
| RL Offset              | +300         | Medium             | NBT, SBT, EBL, WBL                                    | High               | EBL, WBL                                                 |  |  |  |
|                        | +600         | Medium             | NBT, SBT, EBL, WBL                                    | Low                | n/a                                                      |  |  |  |
|                        | +900         | High               | EBL, EBT, NBT, WBL                                    | Low                | n/a                                                      |  |  |  |
|                        | +1200        | High               | EBL, EBT, NBT, WBL                                    | Low                | n/a                                                      |  |  |  |
| v/c = 0.9              |              |                    |                                                       |                    |                                                          |  |  |  |
| LR Offset              | -1200        | Medium             | NBT, SBT, EBL, WBL, NBL, SBL                          | Low                | n/a                                                      |  |  |  |
|                        | -900         | Medium             | NBT, SBT, EBL, WBL, NBL, SBL                          | Low                | n/a                                                      |  |  |  |
|                        | -600         | Medium             | NBT, SBT, EBL, WBL, NBL, SBL                          | Low                | n/a                                                      |  |  |  |
|                        | -300         | Medium             | NBT, SBT, EBL, WBL, NBL, SBL                          | Low                | n/a                                                      |  |  |  |
| 4-Leg                  | 0            | High               | EBT, EBL, EBR, WBL, NBL, SBL                          | Low                | n/a                                                      |  |  |  |
| RL Offset              | +300         | High               | WBL, WBT, NBT, SBT, SBL                               | High               | EBL, WBL                                                 |  |  |  |
|                        | +600         | High               | WBL, WBT, NBT, SBT, SBL                               | Medium             | WBL                                                      |  |  |  |
|                        | +900         | High               | EBL, EBT, NBT, WBL, NBL, SBL                          | Low                | n/a                                                      |  |  |  |
|                        | +1500        | High               | EBL, EBT, NBT, WBL, NBL, SBL                          | Low                | n/a                                                      |  |  |  |


Table 5-3. Operational Performance of Various Intersection Layouts for Hybrid Gas Station

#### 5.2.2 Queue Length

Figure 5-4 presents graphical illustrations of the average through movement queue length divided by spacing ratio and maximum left-turn queue length divided by storage. From Figure 5-3(a), it was found that for both v/c levels, RL offsets are generally superior to LR offsets in terms of avoiding through

movement queuing at signals. For the LR offset T-intersection, queue length to spacing ratio decreases with an increase of spacing. When designing a RL offset T-intersection for Hybrid Gas Station development scenario, Figure 5-3(b) shows that a RL offset T-intersection also requires a relatively longer stem spacing (e.g., > 600 ft) to prevent queue spillback; however, since trip generation rate of a Hybrid Gas Station is usually less than a Superstore shopping center, a spacing of 600 ft. was found to be sufficient.





(a) Average Through Movement Queue Length Divided by Spacing

(b) Maximum Left-Turn Movement Queue Length Divided by Storage

**Figure 5-3**. Queue Length under Various Spacing Levels for Hybrid Gas Station Development Scenario *Note: "EBTS" and "WBTS" refer to the eastbound/westbound through traffic between the stem.* 

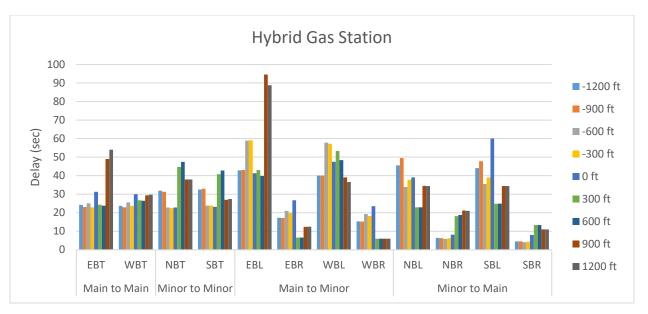
#### 5.2.3 Delay

Figure 5-5 compares vehicle delay under two v/c levels for four movement groups: main street to main street, minor street to minor street, main street to minor street, and minor street to main street, respectively. Major findings from Figures 5-4(a) and 5-4(b) are listed as follows; detailed delay data for the Hybrid Gas Station development under two v/c levels are documented in Tables F2 and F7 of Appendix F, respectively.

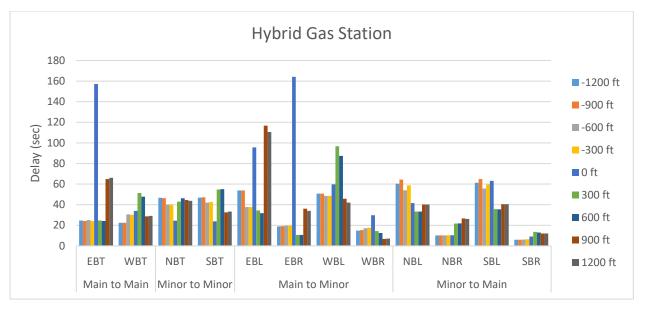
#### Main Street to Main Street

- ✓ 4-leg intersection does not seem to benefit main street through movement
- ✓ LR offset generally outperform RL offset; no significant impacts of spacing was observed

#### Minor Street to Minor Street


- ✓ 4-leg intersection has the lowest delay for minor street movements
- ✓ LR offset, delay decreases with increased spacing; however, for RL offset, delay increases with increased spacing

#### Main Street to Minor Street


✓ Performance depends on movement; for left-turn movements, generally the LR offset outperforms RL offset, particularly when the spacing is relatively longer

#### Minor Street to Main Street

✓ For minor street left-turn movements, generally the RL offset is superior to LR offset. In addition, a shorter spacing level tends to result in less vehicle delay.







(b) v/c = 0.9

**Figure 5-4**. Movement-based Vehicle Delay under Various Spacing Levels for Hybrid Gas Station Development Scenario

## 5.3 Residential Area

## 5.3.1 Anticipated Service Impact

The qualitative description of the anticipated service impact and movements that may experience significant impacts for residential areas are presented in Tables 5-4 and 5-5, respectively.

This research finds that when developing a residential area with a relatively low v/c ratio condition, an LR offset T-intersection with short-to-long spacing (e.g., longer than 300 ft.) could accommodate both AM and PM traffic. When the v/c ratio is high, the LR offset T-intersection again provides better results with short-to-long spacing (e.g., longer than 300 ft.) could accommodate traffic under both AM and PM periods. To accommodate the most challenging situation, this research recommends a LR offset Tintersection with a spacing longer than 300 ft. for the residential area development type. Even so, the RL Offset could be considered in instances where lower v/c ratios are present.

The Analysis of Variance (ANOVA) statistical test on the delay measure of major street through and left turn movements for AM and PM scenarios are documented in Tables E3 and E4 of Appendix E, respectively. Results showed that the recommended offset T-intersection configurations outperforms the regular 4-Leg intersection at 0.05 significance level.

| v/c = 0.7              |              |                    |                                                       |                    |                                                          |  |  |  |  |
|------------------------|--------------|--------------------|-------------------------------------------------------|--------------------|----------------------------------------------------------|--|--|--|--|
|                        |              |                    | Delay                                                 | Queue Length       |                                                          |  |  |  |  |
| Intersection<br>Layout | Spacing (ft) | Anticip.<br>Impact | Movements that May<br>Experience Significant<br>Delay | Anticip.<br>Impact | Movements that May<br>Experience Significant<br>Queueing |  |  |  |  |
|                        | -1200        | Medium             | NBT, SBT, EBL, WBL, NBL, SBL                          | Low                | n/a                                                      |  |  |  |  |
| LR Offset              | -900         | Medium             | NBT, SBT, EBL, WBL, NBL, SBL                          | Low                | n/a                                                      |  |  |  |  |
| LK Offset              | -600         | Medium             | NBT, WBL, NBL, SBL                                    | Low                | n/a                                                      |  |  |  |  |
|                        | -300         | Medium             | NBT, WBL, NBL, SBL                                    | Low                | n/a                                                      |  |  |  |  |
| 4-Leg                  | 0            | Medium             | EBL, WBL, NBL, SBL                                    | Low                | n/a                                                      |  |  |  |  |
|                        | +300         | Medium             | SBT, EBL, WBL                                         | High               | WBL                                                      |  |  |  |  |

NBT, SBT, EBL, WBL

EBL, EBT, WBT, WBL, NBL

EBL, EBT, WBT, WBL, NBL

Medium

Low

Low

WBL

n/a

n/a

Medium

High

Medium

+600

+900

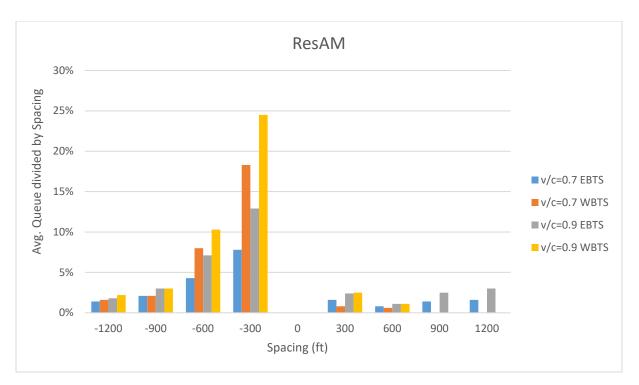
+1200

Table 5-4. Operational Performance of Various Intersection Layouts for Residential Area Development Scenario AM Period

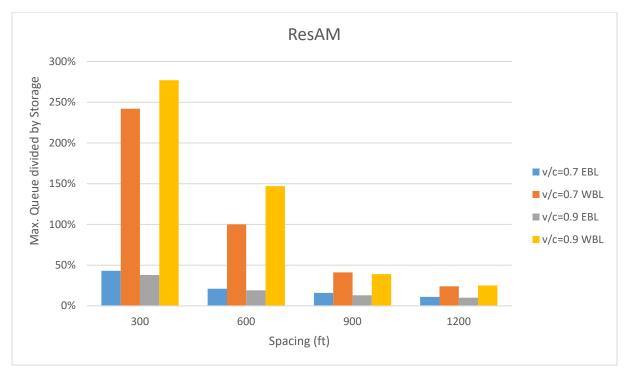
|   | 1- | _ | <u> </u> |  |
|---|----|---|----------|--|
| v | /C | = | 0.9      |  |

**RL Offset** 

| v/c = 0.9 |       |        |                                      |      |     |
|-----------|-------|--------|--------------------------------------|------|-----|
|           | -1200 | Medium | NBT, SBT, EBL, WBL, NBL, SBL         | Low  | n/a |
| LR Offset | -900  | Medium | NBT, SBT, EBL, WBL, NBL, SBL         | Low  | n/a |
| LK Offset | -600  | Medium | NBT, SBT, EBL, WBL, NBL, SBL         | Low  | n/a |
|           | -300  | Medium | NBT, SBT, EBL, WBL, NBL, SBL         | Low  | n/a |
| 4-Leg     | 0     | High   | EBT, EBL, EBR, NBL, SBL              | Low  | n/a |
|           | +300  | High   | WBL, WBT, EBL, NBL                   | High | WBL |
|           | +600  | High   | WBL, WBT, NBT, SBT, EBL, NBL         | High | WBL |
| RL Offset | +900  | High   | WBT, EBL, WBL, WBR, EBT, NBL         | Low  | n/a |
|           | +1200 | High   | WBT, EBL, WBL, WBR, EBT,<br>SBT, NBL | Low  | n/a |

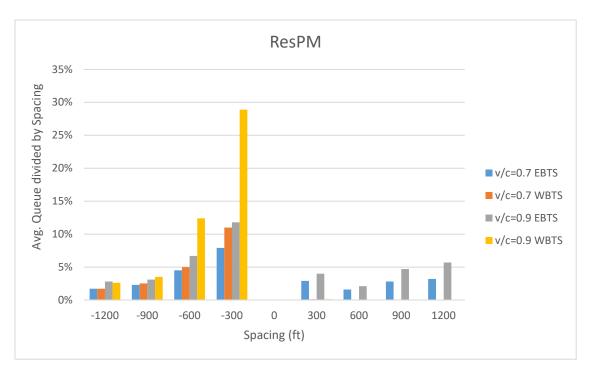

| v/c = 0.7              |              |                    |                                                       |                    |                                                          |
|------------------------|--------------|--------------------|-------------------------------------------------------|--------------------|----------------------------------------------------------|
|                        |              |                    | Delay                                                 |                    | Queue Length                                             |
| Intersection<br>Layout | Spacing (ft) | Anticip.<br>Impact | Movements that May<br>Experience Significant<br>Delay | Anticip.<br>Impact | Movements that May<br>Experience Significant<br>Queueing |
|                        | -1200        |                    | EBL, WBL, NBL, SBL                                    | Low                | n/a                                                      |
| LR Offset              | -900         | Medium             | EBL, WBL, NBL, SBL                                    | Low                | n/a                                                      |
| LK Offset              | -600         | Medium             | EBL, WBL, NBL, SBL                                    | Low                | n/a                                                      |
|                        | -300         | Medium             | EBL, WBL, NBL, SBL                                    | Low                | n/a                                                      |
| 4-Leg                  | 0            | Medium             | EBL, WBL, NBL, SBL                                    | Low                | n/a                                                      |
|                        | +300         | Medium             | WBT, SBT, WBL                                         | High               | WBL, EBL                                                 |
| RL Offset              | +600         | Medium             | WBT, SBT, WBL                                         | Low                | n/a                                                      |
| RL Offset              | +900         | High               | EBL, EBT, WBL                                         | Low                | n/a                                                      |
|                        | +1200        | High               | EBL, EBT, WBL                                         | Low                | n/a                                                      |
| v/c = 0.9              | -            |                    |                                                       |                    |                                                          |
|                        | -1200        | Medium             | NBT, SBT, EBL, WBL, NBL, SBL                          | Low                | n/a                                                      |
| LR Offset              | -900         | Medium             | NBT, SBT, EBL, WBL, NBL, SBL                          | Low                | n/a                                                      |
| LR Offset              | -600         | Medium             | WBT, NBT, SBT, WBL, NBL, SBL                          | Low                | n/a                                                      |
|                        | -300         | Medium             | WBT, NBT, SBT, WBL, NBL, SBL                          | Low                | n/a                                                      |
| 4-Leg                  | 0            | High               | EBT, EBL, EBR, WBL, NBL, SBL                          | Low                | n/a                                                      |
|                        | +300         | High               | WBT, WBL, NBT, SBT, WBR                               | High               | EBL, WBL                                                 |
| RL Offset              | +600         | High               | WBT, WBL, NBT, SBT                                    | Medium             | WBL                                                      |
| RL UIISE(              | +900         | High               | EBT, EBL, EBR, NBT, WBL, NBL                          | Low                | n/a                                                      |
|                        | +1200        | High               | EBT, EBL, EBR, NBT, WBL, NBL                          | Low                | n/a                                                      |

**Table 5-5.** Operational Performance of Various Intersection Layouts for Residential Area Development

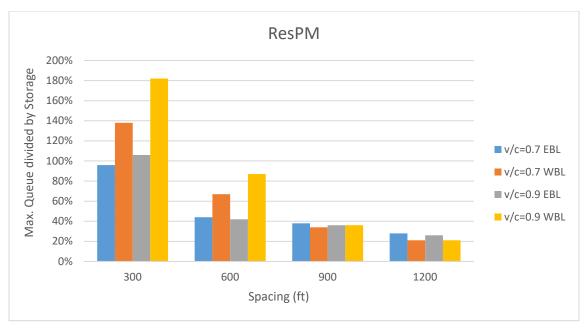

 Scenario PM Period

## 5.3.2 Queue Length

Figures 5-5 and 5-6 illustrate the queue length measures for Residential area scenarios with AM period and PM period traffic, respectively. It was found that for both AM and PM periods, RL offsets are generally superior to LR offsets in terms of avoiding through movement queuing at signals. For the LR offset T-intersection, queue length to spacing ratio decrease with the increase of spacing. When designing an RL offset T-intersection for a Residential area, special attention should be paid to the WBL movement. Generally speaking, under a low v/c ratio (e.g., lower than 0.7), a spacing that is larger than 600 ft. was found to be sufficient to contain the vehicle queue of the WBL movement. When the v/c ratio is larger than 0.7, a longer spacing (e.g., longer than 900 ft.) is recommended.




(a) Average Through Movement Queue Length Divided by Spacing




(b) Maximum Left-Turn Movement Queue Length Divided by Storage

**Figure 5-5**. Queue Length under Various Spacing Levels for Residential Area Development AM Scenario. *Note: "EBTS" and "WBTS" refer to the eastbound/westbound through traffic between the stem.* 



(a) Average Through Movement Queue Length Divided by Spacing



(b) Maximum Left-Turn Movement Queue Length Divided by Storage

**Figure 5-6**. Queue Length under Various Spacing Levels for Residential Area Development PM Scenario. *Note: "EBTS" and "WBTS" refer to the eastbound/westbound through traffic between the stem.* 

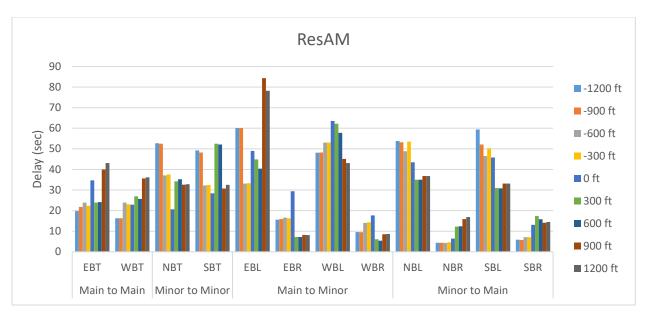
## 5.3.3 Delay

Figures 5-7 and 5-8 presented the comparisons of vehicle delays for a Residential development during AM period and PM period traffic conditions, respectively. Major findings from the comparisons are listed as follows; detailed delay data for the Residential development AM period under the v/c levels are documented in Tables F3 and F8 of Appendix F. Vehicle delay for Residential development PM period are documented in Tables F4 and F9, respectively.

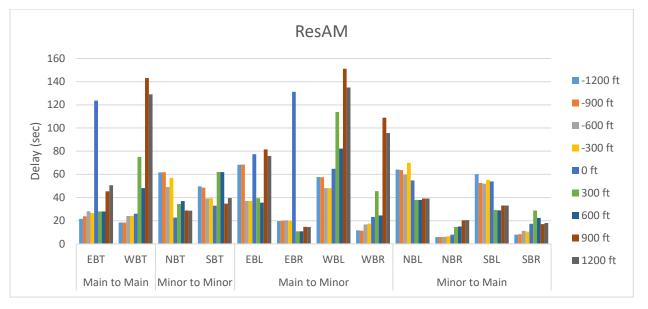
### Main Street to Main Street

- ✓ LR offset is superior to RL offset and 4-leg intersection; under a high v/c ratio condition, 4-leg intersection tends to bring significant delay to the EBT movement
- ✓ For LR offset, generally a longer spacing will result in a lower vehicle delay for both EBT and WBT movements
- RL offset with a long spacing is not recommended since it would bring significant delay to both EBT and WBT movements

### Minor Street to Minor Street

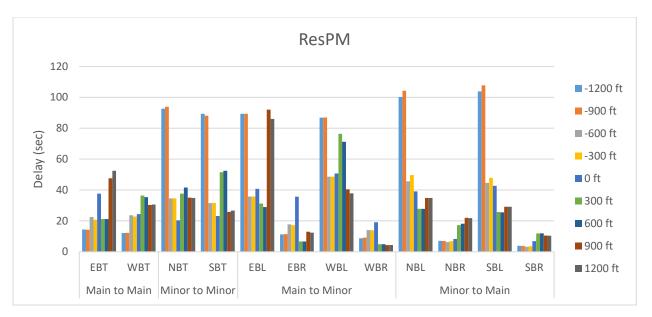

- ✓ 4-leg standard intersection has the lowest delay for minor street movements
- ✓ LR offset, delay generally increases with increased spacing
- ✓ RL offset, delay decreases with increased spacing

#### Main Street to Minor Street

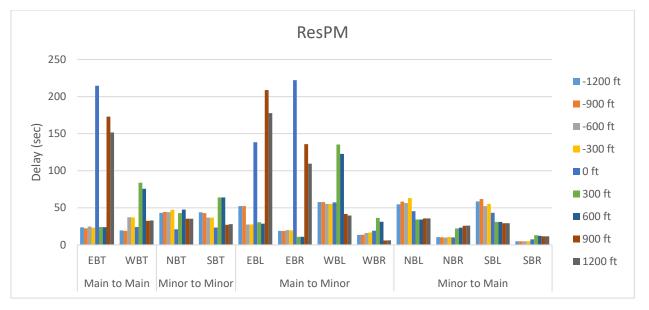

- Performance depends on movement; right turns have lower delays than left turns, while 4leg standard intersection tends to bring significant delay to the EBR movement
- ✓ For EBL movements, a short spacing will lead to less delay

#### Minor Street to Main Street

- ✓ For minor street left turn movements, RL offset is superior to LR offset and 4-leg standard intersection; and a shorter spacing tends to result in a lower delay
- ✓ LR offset is particularly beneficial to minor street right-turn movements




(a) v/c = 0.7




(b) v/c = 0.9

**Figure 5-7**. Movement-based Vehicle Delay under Various Spacing Levels for Residential Area Development Scenario AM Period



(a) v/c = 0.7



(b) v/c = 0.9

**Figure 5-8**. Movement-based Vehicle Delay under Various Spacing Levels for Residential Area Development Scenario PM Period

## 5.4 Realign

### 5.4.1 Anticipated Service Impact

The qualitative description of the anticipated service impact and movements that may experience significant impacts for the Realign scenario are presented in Table 5-6. This research team recommends a LR offset T-intersection with a relatively longer spacing for a roadway realignment scenario.

#### NCDOT 2019-31 Project Report

The Analysis of Variance (ANOVA) statistical test on the delay measure of major street through and left turn movements is listed in Table E5 of Appendix E. Results indicated that the recommended offset T-intersection design generally outperforms the 4-leg intersection design expected for the eastbound left-turn movements under a v/c ratio of 0.7.

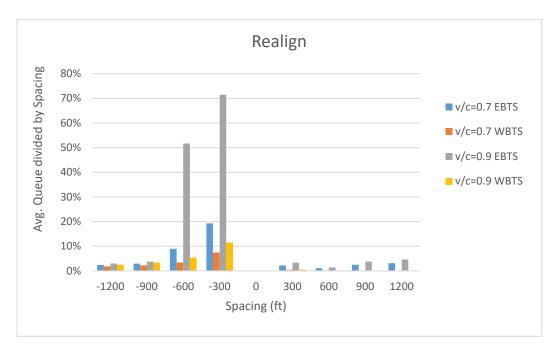

| v/c = 0.7              |              |                          |                                                       |                    |                                                          |
|------------------------|--------------|--------------------------|-------------------------------------------------------|--------------------|----------------------------------------------------------|
|                        |              |                          | Delay                                                 |                    | Queue Length                                             |
| Intersection<br>Layout | Spacing (ft) | Anticip.<br>Impact       | Movements that May<br>Experience Significant<br>Delay | Anticip.<br>Impact | Movements that May<br>Experience Significant<br>Queueing |
|                        | -1200        | Medium                   | EBL, WBL, NBL, SBL                                    | Low                | n/a                                                      |
| LR Offset              | -900         | Medium                   | EBL, WBL, NBL, SBL                                    | Low                | n/a                                                      |
| LK Offset              | -600         | Medium                   | NBT, SBT, EBL, WBL, NBL, SBL                          | Low                | n/a                                                      |
|                        | -300         | Medium                   | NBT, SBT, EBL, WBL, NBL, SBL                          | Low                | n/a                                                      |
| 4-Leg                  | 0            | Medium                   | EBL, WBL, NBL, SBL                                    | Low                | n/a                                                      |
|                        | +300         | Medium                   | NBT, SBT, EBL, WBL                                    | High               | EBL, WBL                                                 |
| RL Offset              | +600         | Medium                   | NBT, SBT, EBL, WBL                                    | Medium             | EBL                                                      |
| RL Offset              | +900         | 0 High EBL, EBT, NBT, WI |                                                       | Low                | n/a                                                      |
|                        | +1500        | High                     | EBL, EBT, NBT, WBL                                    | Low                | n/a                                                      |
| v/c = 0.9              |              |                          |                                                       |                    |                                                          |
|                        | -1200        | Medium                   | NBT, SBT, EBL, WBL, NBL, SBL                          | Low                | n/a                                                      |
| LR Offset              | -900         | Medium                   | NBT, SBT, EBL, WBL, NBL, SBL                          | Low                | n/a                                                      |
| LK Offset              | -600         | High                     | EBT, SBT, SBL, EBL, EBR, NBL                          | Low                | n/a                                                      |
|                        | -300         | High                     | EBT, SBT, SBL, EBL, EBR, NBL                          | Low                | n/a                                                      |
| 4-Leg                  | 0            | Medium                   | EBT, EBL, EBR, WBL, NBL, SBL                          | Low                | n/a                                                      |
|                        | +300         | High                     | WBL, NBT, SBT, EBL, SBL                               | High               | EBL, WBL                                                 |
| RL Offset              | +600         | Medium                   | WBL, NBT, SBT, EBL, SBL                               | Medium             | EBL, WBL                                                 |
| RL Uliset              | +900         | High                     | EBT, EBL. EBR, NBT, WBL, SBL                          | Low                | n/a                                                      |
|                        | +1500        | High                     | EBT, EBL. EBR, NBT, WBL, SBL                          | Low                | n/a                                                      |

 Table 5-6. Operational Performance of Various Intersection Layouts for Realign Scenario

## 5.4.2 Queue Length

Figure 5-9 presents graphical illustrations of the average through movement queue length divided by spacing ratio and maximum left-turn queue length divided by storage. From Figure 5-9(a), it was found that RL offsets are generally superior to LR offsets, but both designs provided sufficient storage to avoid spillback for through movements between the stems. For LR offset T-intersections, queue length to spacing ratio decreases with an increase in spacing. Under a high v/c condition, the EBT movement tends to have a higher risk of queue spillback when using a short spacing. When designing an RL offset T-

intersection for the Realign scenario, it seems that a spacing larger than 600 feet could accommodate low v/c ratio conditions but may create left turn storage concerns when the v/c ratio approaches 0.9 or more.



Realign 350% Max. Queue divided by Storage 300% 250% 200% ■ v/c=0.7 EBL v/c=0.7 WBL 150% ■ v/c=0.9 EBL 100% v/c=0.9 WBL 50% 0% 300 600 900 1200 Spacing (ft)

(a) Average Through Movement Queue Length Divided by Spacing

(b) Maximum Left-Turn Movement Queue Length Divided by Storage

**Figure 5-9**. Queue Length under Various Spacing Levels for Realign Scenario for Realign Scenario. *Note: "EBTS" and "WBTS" refer to the eastbound/westbound through traffic between the stem.* 

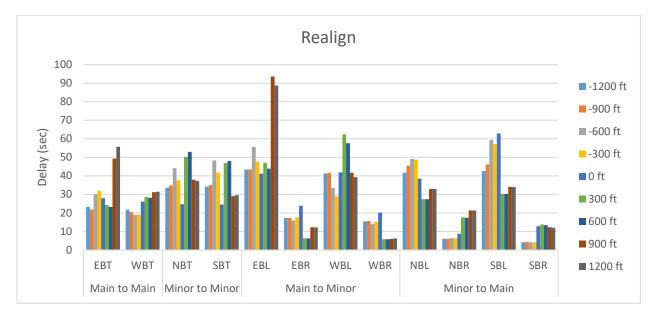
### 5.4.3 Delay

Figure 5-10 compares vehicle delay under two v/c levels for four movement groups: main street to main street, minor street to minor street, main street to minor street, and minor street to main street, respectively. Major findings are listed as follows; detailed delay data for the Realign scenario under two v/c levels are documented in Tables F5 and F10 of Appendix F, respectively.

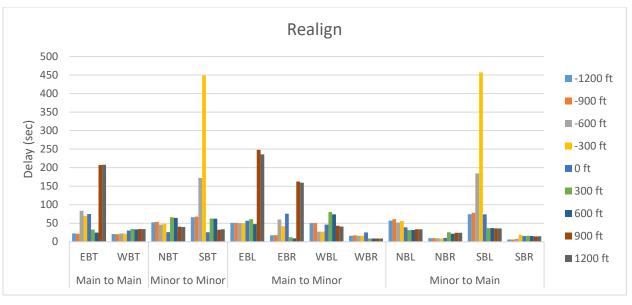
#### Main Street to Main Street

✓ LR offset generally has a smaller delay than RL offset and 4-leg standard intersection. In addition, a longer spacing generally resulted in a lower delay.

#### Minor Street to Minor Street


- ✓ 4-leg intersection has the lowest delay for minor street movements
- ✓ For both LR and RL offsets, delay tends to decrease with increased spacing.

#### Main Street to Minor Street


✓ Generally, the LR offset with a shorter spacing benefits left-turn movements

#### **Minor Street to Main Street**

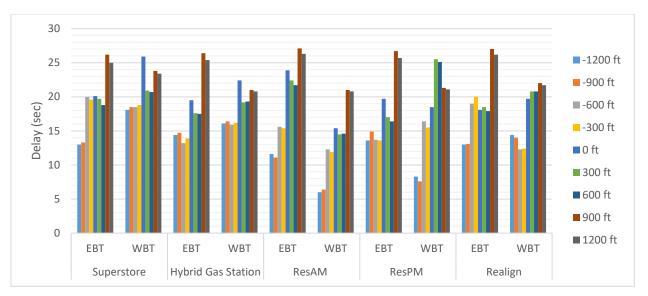
- ✓ RL offset is superior to LR offset for minor street left turn movements, particularly when spacing is short
- ✓ LR offset is beneficial to minor street right-turn movements



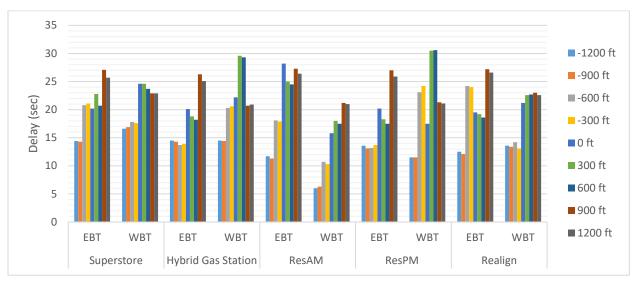
(a) v/c =0.7



(b) v/c =0.9


Figure 5-10. Movement-based Vehicle Delay under Various Spacing Levels for Realign Scenario

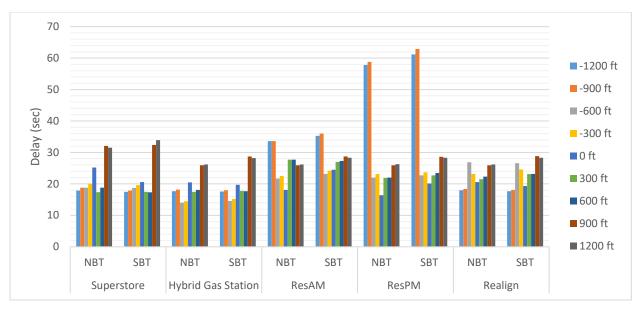
# 5.5 Bicycle and Pedestrian Delay


## 5.5.1 Bicycle Delay

Figures 5-11 to 5-14 compare bicycle delay under two v/c levels for four movement groups: main street to main street, minor street to minor street, main street to minor street, and minor street to main street, respectively. Overall, the LR design tends to reduced bicycle delay over the RL design, with exceptions noted below. Detailed simulation results are attached in Appendix F.

*Main Street to Main Street:* Simulation results reveals that LR offset outperformed RL offset in terms of reducing bicycle delay for main street through movements. For LR offset, generally a longer spacing has a lower delay, while for RL offset, a shorter spacing has a lower delay.




(a) Main Street to Main Street (v/c=0.7)



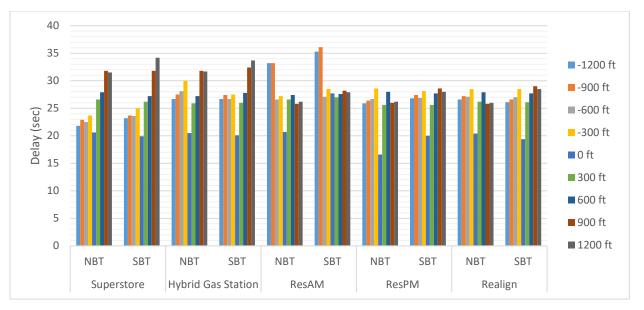
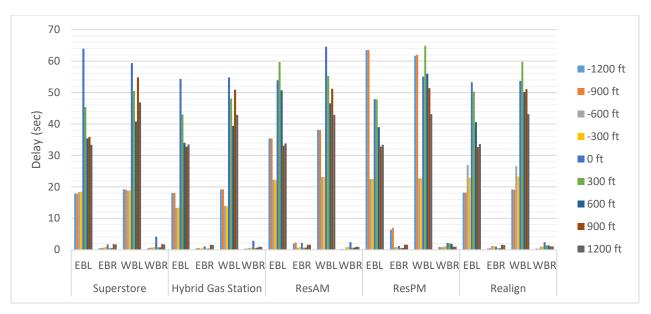
(b) Main Street to Main Street (v/c=0.9)

Figure 5-11. Comparison of Bicycle Delay for Main Street Through Movements

*Minor Street to Minor Street:* Simulation results reveals that for the minor street through movement, bicycle delay tends to be affected by the signal timing plan tested during the simulation experiment. For a given development type, the +900 ft and +1200 ft, as well as the -900 ft and -1200 ft, spacings used the same signal phasing schemes. This can explain much of the delay increase seen in those spacings. In addition, an offset T-intersection with a high v/c ratio tends to have a higher bicycle delay than a 4-leg intersection.



(a) Minor Street to Minor Street (v/c=0.7)

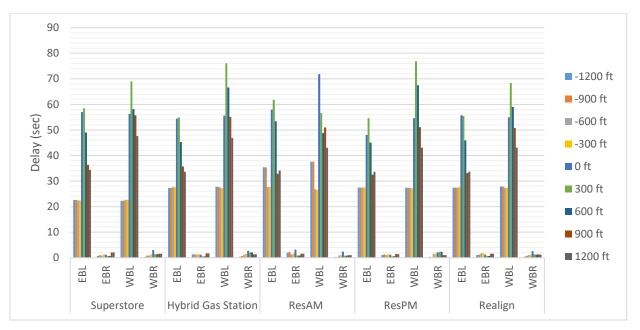
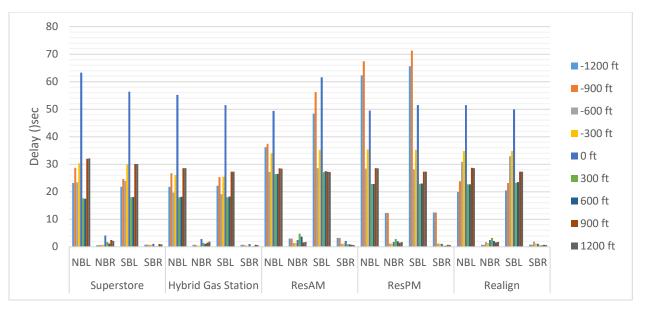




Figure 5-12. Comparison of Bicycle Delay for Minor Street Through Movements

*Main Street to Minor Street:* For main street left turn and right turn movements, this research found that under most scenarios, offset T-intersections are superior to 4-leg standard intersections and the LR offset is superior to the RL offset. For the LR offset, a shorter stem spacing tends to reduce bicycle delay, while for RL offset, a longer stem spacing will reduce bicycle delay.




(a) Main Street to Minor Street (v/c=0.7)



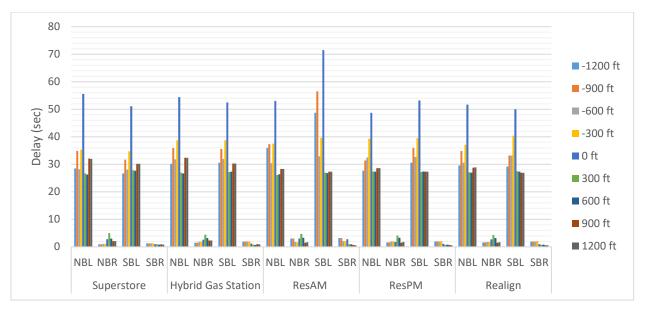
(b) Main Street to Minor Street (v/c=0.9)

Figure 5-13. Comparison of Bicycle Delay for Main Street to Minor Street Movements

*Minor Street to Main Street:* For minor street left turn and right turn movements, simulation results revealed that 4-Leg standard intersections result in the highest bicycle delay, particularly under high v/c scenarios.



(a) Minor Street to Main Street (v/c=0.7)



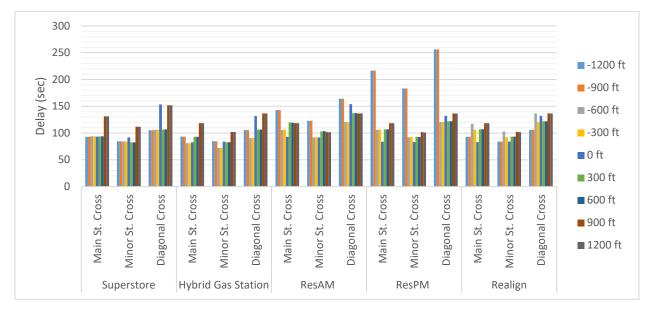




Figure 5-14. Comparison of Bicycle Delay for Minor Street to Main Street Movements

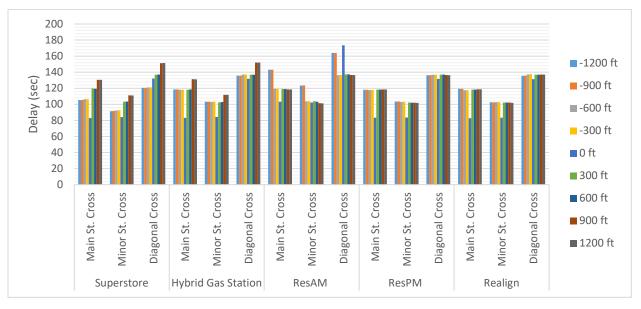

## 5.5.2 Pedestrian Delay

Figure 5-20 compares pedestrian delay under two volume-to-capacity ratios for three crossing movements: main street crossing, minor street crossing, and diagonal crossing, respectively. Simulation results indicate that under most of the scenarios, 4-leg standard intersections resulted in a lower pedestrian delay in comparison with offset T-intersections. At a high v/c ratio, for both LR and RL offsets,

it was found that a longer spacing tends to result in a higher pedestrian delay. This is likely explained by the differences in the cycle length. For the 4-leg intersection, the cycle lengths varied from 90-110 seconds, whereas for the offset intersections the cycle lengths varied from 110-130 seconds. The offset intersections tend to have longer cycle lengths to achieve vehicular progression and reduce queue lengths, but results in an increased delay for pedestrians.











# 6. Movement Based SPF

The movement based safety performance function (MBSPF) method developed by Chase et al. (2020) presented a safety performance function (SPF) based on conflict point and non-conflict point crash data and is applicable to various intersection geometries. The MBSPF requires daily turning movement counts as an input. To evaluate the five volume scenarios, the hourly volumes were factored to daily volumes. Cunningham et al. (2016) developed five daily volume profiles, detailing the percent of traffic in each hour for each profile. The average peak hour of the five profiles contained 8.37% of the daily traffic. Therefore, to generate the daily turning movement counts for SPF analysis, each of the five hourly volumes were assumed to be 8.37% of the total daily volumes. The resulting daily counts are presented in Tables 6-1 and 6-2. These volumes were then applied to the LR, RL, and four-leg intersection SPF models.

The predicted crashes are shown in Table 6-3 along with the percentage of crashes related to the standard four-leg intersection. Generally speaking, the LR and RL geometries have a similar number of predicted crashes. These values tend to be 87.7-90.4% of the total predicted number of crashes for the four-leg standard intersection geometry. This reduction in crashes is consistent with existing literature, although some collision studies tend to show an even greater reduction.

|                            |       |       |           | Daily    | / Turning | Moveme | nt Volur | nes (vehi | cles)     |           |        |        |
|----------------------------|-------|-------|-----------|----------|-----------|--------|----------|-----------|-----------|-----------|--------|--------|
| 4-Leg Layout               |       | NB    |           |          | SB        |        |          | EB        |           |           | WB     |        |
|                            | LT    | Thru  | RT        | LT       | Thru      | RT     | LT       | Thru      | RT        | LT        | Thru   | RT     |
| Hybrid Gas                 | 0.545 | 246   |           | 0.400    | 250       |        | 0.407    | 0.407     | 0.010     | 1.050     | 6.004  | 1 400  |
| Station (PM)               | 2,545 | 346   | 3,823     | 2,139    | 358       | 1,434  | 2,127    | 9,427     | 2,019     | 1,350     | 6,284  | 1,422  |
| Superstore<br>(PM)         | 1,744 | 1,207 | 2,616     | 3,202    | 1,243     | 2,139  | 3,154    | 6,476     | 1,386     | 920       | 4,313  | 2,103  |
| Residential<br>AM          | 4,707 | 227   | 3,142     | 538      | 669       | 812    | 179      | 7,754     | 1,661     | 2,485     | 11,625 | 263    |
| Residential                |       |       |           |          |           |        |          |           |           |           |        |        |
| PM                         | 2,832 | 753   | 4,241     | 526      | 442       | 358    | 908      | 10,478    | 2,246     | 1,493     | 6,989  | 597    |
| Realign                    | 1,971 | 1,649 | 2,963     | 1,971    | 1,099     | 1,314  | 1,314    | 10,526    | 1,314     | 872       | 7,025  | 872    |
|                            |       |       | Left Inte | rsection | -         |        |          |           | Right Int | ersectior | 1      |        |
| LR Layout                  |       |       |           | В        | v         | /B     | N        | IB        | E         | В         | v      | /В     |
|                            | LT    | RT    | LT        | Thru     | Thru      | RT     | LT       | RT        | Thru      | RT        | LT     | Thru   |
| Hybrid Gas<br>Station (PM) | 2,497 | 1,434 | 2,127     | 11,458   | 8,829     | 1,768  | 2,891    | 3,823     | 11,577    | 2,378     | 1,350  | 7,706  |
| Superstore<br>(PM)         | 4,444 | 2,139 | 3,154     | 7,861    | 6,057     | 3,309  | 2,951    | 2,616     | 9,665     | 2,628     | 920    | 6,416  |
| Residential                |       |       |           |          |           |        | ,        |           |           |           |        |        |
| AM                         | 1,207 | 812   | 179       | 9,415    | 16,332    | 490    | 4,922    | 3,142     | 8,292     | 2,330     | 2,485  | 11,888 |
| Residential<br>PM          | 968   | 358   | 908       | 12,724   | 9,809     | 1,350  | 3,584    | 4,241     | 11,004    | 2,688     | 1,493  | 7,587  |
| Realign                    | 3,070 | 1,314 | 1,314     | 11,840   | 8,996     | 2,521  | 3,620    | 2,963     | 12,509    | 2,413     | 872    | 7,897  |
|                            |       |       | Left Inte | rsection |           |        |          |           | Right Int | ersection | 1      | •      |
| <b>RL Layout</b>           | NE    | 3     | E         | В        | W         | /В     | s        | SB        | E         | В         | W      | /B     |
|                            | LT    | RT    | RT        | Thru     | Thru      | LT     | LT       | RT        | Thru      | LT        | RT     | Thru   |
| Hybrid Gas<br>Station (PM) | 2,545 | 4,170 | 11,565    | 2,019    | 1,708     | 7,718  | 2,139    | 1,792     | 2,473     | 13,250    | 7,634  | 1,422  |
| Superstore<br>(PM)         | 1,744 | 3,823 | 9,618     | 1,386    | 2,162     | 6,452  | 3,202    | 3,381     | 4,361     | 9,092     | 5,233  | 2,103  |
| Residential                | _,    | -,    |           | _,       |           |        | -,       | -,        | .,        | -,        |        |        |
| AM                         | 4,707 | 3,357 | 7,933     | 1,661    | 3,166     | 12,437 | 538      | 1,481     | 406       | 10,884    | 14,110 | 263    |
| Residential<br>PM          | 2,832 | 4,994 | 11,374    | 2,246    | 1,935     | 7,336  | 526      | 800       | 1,661     | 14,719    | 8,483  | 597    |
| Realign                    | 1,971 | 4,612 | 11,840    | 1,314    | 1,971     | 8,339  | 1,971    | 2,413     | 2,963     | 13,489    | 7,897  | 872    |

 Table 6-1. Daily Turning Movement Volume for Three Intersection Layouts (v/c = 0.7)

|                            |       |       |           | Daily    | / Turning | Moveme | ent Volun | nes (vehi | cles)            |           |        |        |
|----------------------------|-------|-------|-----------|----------|-----------|--------|-----------|-----------|------------------|-----------|--------|--------|
| 4-Leg Layout               |       | NB    |           |          | SB        |        |           | EB        |                  |           | WB     |        |
|                            | LT    | Thru  | RT        | LT       | Thru      | RT     | LT        | Thru      | RT               | LT        | Thru   | RT     |
| Hybrid Gas                 |       |       |           |          |           |        |           |           |                  |           |        |        |
| Station (PM)               | 3,441 | 346   | 5,161     | 2,139    | 358       | 1,434  | 2,127     | 12,748    | 2,736            | 1,816     | 8,495  | 1,422  |
| Superstore<br>(PM)         | 2,987 | 1,207 | 4,492     | 3,202    | 1,243     | 2,139  | 3,154     | 11,087    | 2,378            | 1,589     | 7,395  | 2,103  |
| Residential<br>AM          | 6,213 | 227   | 4,146     | 538      | 669       | 812    | 179       | 10,239    | 2,198            | 3,286     | 15,352 | 263    |
| Residential<br>PM          | 3,716 | 753   | 5,579     | 526      | 442       | 358    | 908       | 13,787    | 2,951            | 1,971     | 9,188  | 597    |
| Realign                    | 2,533 | 2,115 | 3,811     | 2,533    | 1,410     | 1,697  | 1,697     | 13,536    | 1,697            | 1,123     | 9,020  | 1,123  |
|                            | _,    | _/    | Left Inte | -        | _,        | _,     |           |           |                  | ersection |        | _/     |
| LR Layout                  | SE    | 3     |           | В        | W         | /B     | N         | NB        | -                | B         |        | /B     |
|                            | LT    | RT    | LT        | Thru     | Thru      | RT     | LT        | RT        | Thru             | RT        | LT     | Thru   |
| Hybrid Gas                 | 2,497 | 1,434 | 2,127     | 15,472   | 11,935    | 1,768  | 3,787     | 5,161     | 14,886           | 3,094     | 1,816  | 9,916  |
| Station (PM)<br>Superstore | 2,497 | 1,454 | 2,127     | 15,472   | 11,955    | 1,708  | 5,767     | 5,101     | 14,000           | 5,094     | 1,010  | 9,910  |
| (PM)                       | 4,444 | 2,139 | 3,154     | 13,465   | 10,382    | 3,309  | 4,194     | 4,492     | 14,289           | 3,620     | 1,589  | 9,486  |
| Residential                | 4 207 | 012   | 470       | 42 427   | 24 5 7 7  | 100    | 6.440     |           | 10 777           | 2.067     | 2.200  | 45 627 |
| AM<br>Residential          | 1,207 | 812   | 179       | 12,437   | 21,577    | 490    | 6,440     | 4,146     | 10,777           | 2,867     | 3,286  | 15,627 |
| PM                         | 968   | 358   | 908       | 16,738   | 12,915    | 1,350  | 4,468     | 5,579     | 14,313           | 3,393     | 1,971  | 9,797  |
| Realign                    | 3,943 | 1,697 | 1,697     | 15,233   | 11,565    | 3,238  | 4,659     | 3,811     | 16,081           | 3,106     | 1,123  | 10,155 |
|                            |       |       | Left Inte | rsection |           |        |           |           | <b>Right Int</b> | ersectior | n      |        |
| <b>RL Layout</b>           | N     | 3     | E         | В        | v         | /В     | 9         | 5B        | E                | В         | v      | /B     |
|                            | LT    | RT    | RT        | Thru     | Thru      | LT     | LT        | RT        | Thru             | LT        | RT     | Thru   |
| Hybrid Gas<br>Station (PM) | 3,441 | 5,508 | 14,875    | 2,736    | 2,174     | 9,928  | 2,139     | 1,792     | 2,473            | 17,897    | 10,311 | 1,422  |
| Superstore<br>(PM)         | 2,987 | 5,687 | 14,241    | 2,378    | 2,832     | 9,522  | 3,202     | 3,381     | 4,361            | 15,568    | 8,973  | 2,103  |
| Residential<br>AM          | 6,213 | 4,373 | 10,418    | 2,198    | 3,967     | 16,165 | 538       | 1,481     | 406              | 14,385    | 18,650 | 263    |
| Residential<br>PM          | 3,716 | 6,332 | 14,695    | 2,951    | 2,413     | 9,546  | 526       | 800       | 1,661            | 19,367    | 11,159 | 597    |
| Realign                    | 2,533 | 5,926 | 15,233    | 1,697    | 2,533     | 10,717 | 2,533     | 3,106     | 3,811            | 17,348    | 10,155 | 1,123  |

**Table 6-2.** Daily Turning Movement Volume for Three Intersection Layouts (v/c = 0.9)

## Table 6-3. Predicted Number of Crashes Using MBSPF

|                         |              |           | Predicted Nu | mber of Crashes |       |               |  |  |
|-------------------------|--------------|-----------|--------------|-----------------|-------|---------------|--|--|
| 4-Leg Layout            |              | v/c = 0.7 |              | v/c = 0.9       |       |               |  |  |
|                         | LR           | 4Leg      | RL           | LR              | 4Leg  | RL            |  |  |
| Hybrid Gas Station (PM) | 8.85 (89.7%) | 9.87      | 8.80 (89.2%) | 11.69 (90.4%)   | 12.93 | 11.64 (90.0%) |  |  |
| Superstore (PM)         | 8.02 (89.3%) | 8.98      | 7.99 (89.0%) | 12.12 (90.4%)   | 13.40 | 12.06 (90.0%) |  |  |
| Residential AM          | 9.05 (88.8%) | 10.19     | 8.96 (87.9%) | 12.23 (89.9%)   | 13.61 | 12.12 (89.1%) |  |  |
| Residential PM          | 8.27 (88.4%) | 9.36      | 8.25 (88.1%) | 11.03 (89.5%)   | 12.33 | 11.00 (89.2%) |  |  |
| Realign                 | 8.85 (88.5%) | 10.00     | 8.77 (87.7%) | 11.94 (89.5%)   | 13.34 | 11.85 (88.8%) |  |  |

# 7. Conclusions and Recommendations

When desiring to expand an existing three-leg intersection, a fourth leg can be added to create a standard 4-leg standard intersection, or the fourth leg can be shifted up- or downstream to create an offset T-intersection. Existing literature regarding the safety of such a decision suggests the offset T-intersection results in as much as a 50% reduction in crashes over the four-leg intersection, which is mainly due to the reduction in conflict points for the offset design.

Nevertheless, there is less existing literature on the operational differences between 4-leg standard and offset T-intersections. This research effort employed a microsimulation approach to investigate the differences in operational performance between 4-leg standard intersections and offset T-intersections under various volumes, spacings, OD patterns, and signal timing schemes. Based on the simulation results, this report provides NCDOT recommendations for the selection of the optimal offset T-intersection configuration for each specific development project.

Specific recommendation for each development scenario is presented as follows:

#### Superstore Development Scenario

• This research recommends a LR offset T-intersection with a stem spacing longer than 600 ft. for the Superstore development scenario.

#### Hybrid Gas Station Development Scenario

• This research recommends a LR offset T-intersection for the hybrid gas station development scenario; when possible, a spacing that is longer than 300 ft. is recommended.

#### Residential Area Development Scenario

• This research recommends that under a relatively low v/c ratio condition, a LR offset Tintersection with a medium spacing (e.g., around 600 ft.) for both AM and PM periods. When the v/c ratio is high, a LR offset T-intersection with a longer spacing (e.g., longer than 600 ft.) is recommended.

#### **Realign Scenario**

• This research recommends a LR offset T-intersection with a relatively longer spacing (i.e., longer than 900 ft.) for the Realign scenario, particularly when v/c ratio is larger than 0.7.

Specific findings for each of the performance metrics from this research are listed as follows:

#### Queue Length

#### Average Through Movement Queue Length divided by Spacing

This research effort revealed that for both v/c levels, RL offsets are generally superior to LR offsets in terms of avoiding main street through movements from queuing at signals. For the LR offset T-

intersection, queue length to spacing ratio decreases with the increase of spacing; while for RL offset T-intersection, queue length to spacing ratio tends to be impacted by both spacing and development category.

### Maximum Left-Turn Movement Queue Length divided by Storage

This research reveals that for RL offset T-intersection, usually it requires a relatively longer stem spacing (e.g., > 900 ft) to prevent queue spillback, even if under a low v/c level.

## Delay

## Vehicle Delay

## Main Street to Main Street

This research found that under about half of the scenarios, offset T-intersections are superior to 4-leg intersection in terms of reducing delay for the main street through movements. For the LR offset, a longer spacing generally resulted in a lower vehicle delay; while for the RL offset a shorter spacing generally resulted in a lower delay.

## Minor Street to Minor Street

Simulation results showed that the 4-leg standard intersection had the lowest minor street through movement delay for all the scenarios. For the LR offset, delay decreased with increased spacing and for RL offset, delay increased with increased spacing.

### Main Street to Minor Street

Simulation results showed that the performance of main street left turn and right turn movements tend to be impacted by development type. In general, right-turn movements have lower delays than left-turn movements. In addition, it was found that for the EBL movement, the LR offset generally outperforms RL offset.

## Minor Street to Main Street

This research found that minor street right turns have lower delays than left turns. For right turn movements, the LR offset-T tends to be superior to RL offset; while for left-turn movements, generally the RL offset is superior to LR offset. For the RL offset, a shorter stem spacing is superior to a longer spacing.

## **Bicycle Delay**

This research found that bicycle delay has a similar trend as vehicle delay. Specifically, for main street through movements, the LR offset outperforms RL offset. Bicycle delay decreases with an increased LR offset spacing (or decreased RL offset spacing). For the minor street through movement, bicycle delay tends to be affected by development type. For main street left turn and right turn movements, this research found that under most scenarios, offset T-intersections are superior to 4-leg standard intersections and the LR offset is superior to the RL offset. For the LR offset, a shorter stem spacing tends to reduce bicycle delay, while for RL offset, a longer stem spacing will reduce bicycle delay. For

minor street left turn and right turn movements, simulation results revealed that 4-Leg standard intersections result in the highest bicycle delay, particularly under high v/c scenarios.

### **Pedestrian Delay**

This research found that under most of the scenarios, 4-leg standard intersections resulted in a lower pedestrian delay in comparison with offset T-intersections. For both LR and RL offsets, it was found that a longer spacing tends to result in a higher pedestrian delay.

This research did not take into account travel time as a performance measure, which is mainly because travel time is dependent upon site conditions such as the spacing between two intersections. Therefore, future work needs to analyze the distance traveled under each spacing level for realignment projects. Additionally, this research did not consider a RL geometry with left turn lanes which each extended the full distance between the stems, instead focusing on a geometry in which the combined length of the left turn lanes was equal to the distance between the stems. This allowed equivalent use of right-of-way to be considered in both RL and LR scenarios. It should be noted that, should additional right-of-way be available, extended left turn lanes may improve queue storage concerns making this is a viable intersection configuration under many scenarios.

It is necessary to point out that this research presented comparisons of the effects of spacing on traffic operation under four hypothetical development scenarios; accordingly, it provided NCDOT engineers with practical planning-level recommendations for each development scenario. As this research focused only on signalized offset T-intersections with a specific number of lanes, future research needs to cover a wider range of offsets and number of lanes, and develop an optimal signal timing scheme based on field collected traffic flow data to improve the operation of the offset T-intersection.

## 8. References

- Bared, J.G., Kaisar, E.I. *Advantages of Offset T-Intersections with Guidelines*. Proceedings of the International Conference for Road Safety on Three Continents, pp.98-111, Moscow, Russia, 2001.
- Barua, U., A. Azad, and R. Tay. Fatality Risk of Intersection Crashes on Rural Undivided Highways in Alberta, Canada. *Transportation Research Record*, No. 2148, 2010, pp. 107-115.
- Cai, Z., Xiong, M., Ma, D., Wang, D. Traffic Design and Signal Timing of Staggered Intersection based on a Sorting Strategy. *Advances in Mechanical Engineering*, Vol.8(4), 2016, pp.1-9.
- Ceder, A., Eldar, K. Optimal distance between two branches of uncontrolled split intersection. *Transportation Research Part A*, Vol.36, 2002, pp.699-724.
- Chase, T., Cunningham, C., Warchol, S., Vaughan, C., Lee, T., *Reasonable Alternatives for Grade-Separated Intersections*. Report No. FHWA/NC/2018-20, North Carolina Department of Transportation, Raleigh, N.C., 2020.
- Chia, S., Jurewicz, C., Turner, B. *Staggered T Rural Intersections Investigation of Safety Effectiveness*. ARRB Group Ltd. 2013.
- Cunningham, C., Findley, D., Davis, J., Aghdashi, B., Key, S., Small, J. *Evaluation of Life cycle Impacts of Intersection Control Type Selection*. Report No. FHWA/NC/2014-11, North Carolina Department of Transportation, Raleigh, N.C., 2016.
- DelDOT. *Road Design Manual*. Delaware Department of Transportation, Harrington, DE, 2009. Available: https://deldot.gov/Publications/manuals/road\_design/index.shtml
- Elvik, R., T. Vaa, A. Hoye, and M. Sorensen. *The Handbook of Road Safety Measures*. Emerald Group Publishing, 2009.
- Hughes, W., Jagannathan, R., Sengupta, D., Humman, J. *Alternative Intersections/Interchanges: Informational Report (AIIR)*. Report No. FHWA-HRT-09-060, U.S. Department of Transportation, Washington, D.C., 2010.
- Phillips, S., Carter, D., Hummer, J.E., and R.S. Foyle. Effects of Increased U-Turns at Intersections on Divided Facilities and Median Divided versus Five-Lane Undivided Benefits. North Carolina Department of Transportation, Raleigh, NC, 2004. Available: <u>https://www.ncdot.gov/projects/us-1-15-501-moore/Documents/median-vs-five-lane-report.pdf</u>
- ITE. *Trip Generation Manual, 10th Edition*. Institute of Transportation Engineers, Washington, D.C., United States, 2017.
- Kumula, R. *Safety at Highway Junctions Based on Predictive Accident Models*. Presented at Third International Symposium on Intersections Without Traffic Signals, Portland OR, 1997, pp.151-157.
- Ma, W., Li, L., Wu, Z. Investigation of the performance of two-way left-turn lane on roads with staggered intersections. *Canadian Journal of Civil Engineering*, Vol.41, 2014, pp.1005-1018.
- Mahalel, D., Craus, J., Polus, A. Evaluation of Staggered and Cross Intersections. *Journal of Transportation Engineering*, Vol.112(5), 1986, pp.495-506.
- Monsere, C. Safety Comparison of 4-Way Cross and Offset T-Intersection. Publication No. TRA-10-05-12, Oregon Department of Transportation, 2001.
- PTV Group. Traffic Signal Operations with PTV VISTRO. 2020. Available: https://www.ptvgroup.com/en/solutions/products/ptv-vistro/traffic-signal-operations/

Rodegerdts, L. A., B. Nevers, B. Robinson, J. Ringert, P. Koonce, J. Bansen, T. Nguyen, J. McGill, D. Stewart, and J. Suggett. *Signalized Intersections: Informational Guide*. Report No. FHWA-HRT-04-091, U.S. Department of Transportation, Washington, D.C., 2004. Residential

Sheetz Description/ITE Code

# **9. Appendices** Appendix A. ITE Vehicle Trip Generation

The ITE trip generation rates for each development scenario are presented in Table A-1. Based on these trip generation rates, the inbound, outbound as well as the pass by traffic were estimated, as shown in Table A-2. Then, the research team determined the percentage of the generated traffic for each direction and assigned the generated trips to each link (Table A-3). Finally, the traffic volumes used for microsimulation modeling were calculated, as listed in Table A-4 (v/c = 0.7) and Table A-5 (v/c = 0.9).

| Description/ITE Code           |       | ITE                           | ITE Vehicle Trip Generation Rates |                |                      | on Rat    | 05                    |            | Expected  | Total G           | enerated | Trips    | Total Distribution of Generated Trips |             |           |                    |          |          |        |
|--------------------------------|-------|-------------------------------|-----------------------------------|----------------|----------------------|-----------|-----------------------|------------|-----------|-------------------|----------|----------|---------------------------------------|-------------|-----------|--------------------|----------|----------|--------|
|                                | Units | (peak hours                   | are for p                         | eak hour       | of adjace            | ent stree | t traffic u           | nless high | nlighted) | Units             |          |          |                                       |             |           |                    |          | _        |        |
|                                |       | Weekday                       | AM                                | PM             | Pass-By              | AM In     | AM Out                | PM In      | PM Out    |                   | Daily    | AM Hour  | PM Hour                               | AM In       | AM Out    | Pass-By            | PM In    | PM Out   | Pass-B |
| Single Family Homes 210        | DU    | 9.52                          | 0.75                              | 1.00           |                      | 25%       | 75%                   | 63%        | 37%       |                   | . 0      | 0        | 0                                     | 0           | 0         | 0.                 | 0        | 0        | 0      |
| Single Family Homes 210        | DU    | 9.52                          | 0.75                              | 1.00           |                      | 25%       | 75%                   | 63%        | 37%       | 300.0             | 2,856    | 225      | 300                                   | 56          | 169       | 0                  | 189      | 111      | 0      |
| Target                         |       |                               |                                   |                |                      |           |                       |            |           |                   |          |          |                                       |             |           |                    |          |          |        |
|                                |       |                               | Vehicle                           | Trip           | enerati              | on Rat    | 05                    |            |           | Expected          | Total G  | enerated | Trine                                 | Te          | tal Distr | ibution            | of Gener | ated Tri | ns     |
| Target<br>Description/ITE Code | Units |                               |                                   |                | eneration of adjace  |           |                       | nless higt | nlighted) | Expected<br>Units | Total G  | enerated | Trips                                 | To          | tal Distr | ibution            | of Gene  | ated Tri | ps     |
|                                | Units | ITE<br>(peak hours<br>Weekday |                                   | eak hour       |                      | nt stree  | t traffic u           |            |           | Expected<br>Units | Total G  | enerated |                                       | To<br>AM In |           | ibution<br>Pass-By |          | ated Tri |        |
|                                |       | (peak hours                   | are for p<br>AM                   | eak hour<br>PM | of adjace<br>Pass-By | AM In     | t traffic u<br>AM Out |            |           |                   |          |          |                                       |             |           |                    |          |          |        |

#### Table A-1: ITE Trip Generation Rates used by this research

|                                   | Units            | (peak hours | eak hours are for peak hour of adjacent street traffic unless highlight |       |         |       |        |       |        |      |       |         |         |       |        |         |       |        |         |
|-----------------------------------|------------------|-------------|-------------------------------------------------------------------------|-------|---------|-------|--------|-------|--------|------|-------|---------|---------|-------|--------|---------|-------|--------|---------|
|                                   |                  | Weekday     | AM                                                                      | PM    | Pass-By | AM In | AM Out | PM In | PM Out |      | Daily | AM Hour | PM Hour | AM In | AM Out | Pass-By | PM In | PM Out | Pass-By |
| Shopping Center 820 (Equation)    | KSF <sup>2</sup> | Eq          | uations                                                                 |       | 34%     | 62%   | 38%    | 48%   | 52%    |      | 0     | 0       | 0       | 0     | 0      | 0       | 0     | 0      | 0       |
| Convenience. Mkt w/ Gas Pumps 853 | Fuel Position    | 542.60      | 16.57                                                                   | 19.07 | 66%     | 50%   | 50%    | 50%   | 50%    |      | 0     | 0       | 0       | 0     | 0      | 0       | 0     | 0      | 0       |
| Shopping Center 820 (Equation)    | KSF <sup>2</sup> | Eq          | uations                                                                 | ;     | 34%     | 62%   | 38%    | 48%   | 52%    | 8.0  | 1,315 | 33      | 110     | 14    | 8      | 11      | 35    | 38     | 38      |
| Convenience. Mkt w/ Gas Pumps 853 | Fuel Position    | 542.60      | 16.57                                                                   | 19.07 | 66%     | 50%   | 50%    | 50%   | 50%    | 16.0 | 8,682 | 265     | 305     | 45    | 45     | 175     | 52    | 52     | 201     |
|                                   |                  |             |                                                                         |       |         |       |        |       |        |      |       |         |         |       |        |         |       |        |         |

Expected Total Generated Trips Total Distribution of Generated Trips

ITE Vehicle Trip Generation Rates

#### Table A-2: Generated trips for each development scenario

|                         | Inbound | Outbound | Passby |
|-------------------------|---------|----------|--------|
| Hybrid Gas Station (PM) | 87      | 90       | 239    |
| Superstore (PM)         | 302     | 312      | 238    |
| Residential AM          | 56      | 169      | 0      |
| Residential PM          | 189     | 111      | 0      |
| Realign                 | 0       | 0        | 0      |

#### Table A-3: Assignment of the generated trips to each link

|                          | AM   | PM   | 5th  |
|--------------------------|------|------|------|
| % EB on Main Rd          | 0.4  | 0.6  | 0.6  |
| Major vol / Stem Vol     | 2    | 2    | 2    |
| Major vol / (Stem + Maj) | 0.67 | 0.67 | 0.67 |
| Turn %                   | 0.15 | 0.15 | 0.10 |

| Volumes                 | Turning Movement Volumes |     |     |     |     |     |     |     |     |     |     |     |
|-------------------------|--------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|                         | NB                       |     |     | SB  |     |     | EB  |     |     | WB  |     |     |
|                         | L                        | Т   | R   | L   | Т   | R   | L   | т   | R   | L   | Т   | R   |
| Hybrid Gas Station (PM) | 213                      | 29  | 320 | 179 | 30  | 120 | 178 | 789 | 169 | 113 | 526 | 119 |
| Superstore (PM)         | 146                      | 101 | 219 | 268 | 104 | 179 | 264 | 542 | 116 | 77  | 361 | 176 |
| Residential AM          | 394                      | 19  | 263 | 45  | 56  | 68  | 15  | 649 | 139 | 208 | 973 | 22  |
| Residential PM          | 237                      | 63  | 355 | 44  | 37  | 30  | 76  | 877 | 188 | 125 | 585 | 50  |
| Realign                 | 165                      | 138 | 248 | 165 | 92  | 110 | 110 | 881 | 110 | 73  | 588 | 73  |

## **Table A-4**: Estimated turning traffic volume for each development (v/c = 0.7)

## **Table A-5**: Estimated turning traffic volume for each development (v/c = 0.9)

| Volumes                 | Turning Movement Volumes |     |     |     |     |     |     |      |     |     |      |     |  |
|-------------------------|--------------------------|-----|-----|-----|-----|-----|-----|------|-----|-----|------|-----|--|
|                         | NB                       |     |     | SB  |     |     | EB  |      |     | WB  |      |     |  |
|                         | L                        | Т   | R   | L   | Т   | R   | L   | Т    | R   | L   | Т    | R   |  |
| Hybrid Gas Station (PM) | 288                      | 29  | 432 | 179 | 30  | 120 | 178 | 1067 | 229 | 152 | 711  | 119 |  |
| Superstore (PM)         | 250                      | 101 | 376 | 268 | 104 | 179 | 264 | 928  | 199 | 133 | 619  | 176 |  |
| Residential AM          | 520                      | 19  | 347 | 45  | 56  | 68  | 15  | 857  | 184 | 275 | 1285 | 22  |  |
| Residential PM          | 311                      | 63  | 467 | 44  | 37  | 30  | 76  | 1154 | 247 | 165 | 769  | 50  |  |
| Realign                 | 212                      | 177 | 319 | 212 | 118 | 142 | 142 | 1133 | 142 | 94  | 755  | 94  |  |

# Appendix B. VISSIM Vehicle Inputs

|           | Intersection |                       | <b>Traffic Volume</b> | Input (vph) for e | ach OD pattern |         |
|-----------|--------------|-----------------------|-----------------------|-------------------|----------------|---------|
| v/c Ratio | Approach     | Hybrid Gas<br>Station | Superstore            | ResAM             | ResPM          | Realign |
|           | NB           | 562                   | 466                   | 675               | 655            | 551     |
| 0.7       | SB           | 329                   | 550                   | 169               | 111            | 367     |
| 0.7       | EB           | 1137                  | 921                   | 803               | 1140           | 1102    |
|           | WB           | 758                   | 614                   | 1204              | 760            | 734     |
|           | NB           | 748                   | 727                   | 886               | 841            | 708     |
| 0.9       | SB           | 329                   | 550                   | 169               | 111            | 472     |
| 0.9       | EB           | 1473                  | 1390                  | 1056              | 1477           | 1416    |
|           | WB           | 982                   | 927                   | 1583              | 985            | 944     |

Appendix-B1. VISSIM Vehicle Inputs

| Appendix-B2. VISSIM Veh | nicle Static Routes – Relative | Flow (Turning Volume) |
|-------------------------|--------------------------------|-----------------------|
|-------------------------|--------------------------------|-----------------------|

|           |          |          |                       | Relative Fl | ow for each C | D pattern |         |
|-----------|----------|----------|-----------------------|-------------|---------------|-----------|---------|
| v/c Ratio | Approach | Movement | Hybrid Gas<br>Station | Superstore  | ResAM         | ResPM     | Realign |
|           |          | Left     | 0.379                 | 0.314       | 0.583         | 0.362     | 0.300   |
|           | NB       | Thru     | 0.052                 | 0.216       | 0.028         | 0.096     | 0.250   |
|           |          | Right    | 0.569                 | 0.470       | 0.389         | 0.542     | 0.450   |
|           |          | Left     | 0.545                 | 0.487       | 0.267         | 0.400     | 0.450   |
|           | SB       | Thru     | 0.091                 | 0.189       | 0.333         | 0.333     | 0.250   |
| 0.7       |          | Right    | 0.364                 | 0.324       | 0.400         | 0.267     | 0.300   |
| 0.7       | EB       | Left     | 0.157                 | 0.286       | 0.019         | 0.066     | 0.100   |
|           |          | Thru     | 0.694                 | 0.588       | 0.808         | 0.769     | 0.800   |
|           |          | Right    | 0.149                 | 0.126       | 0.173         | 0.165     | 0.100   |
|           |          | Left     | 0.149                 | 0.126       | 0.173         | 0.165     | 0.100   |
|           | WB       | Thru     | 0.694                 | 0.588       | 0.808         | 0.769     | 0.800   |
|           |          | Right    | 0.157                 | 0.286       | 0.019         | 0.066     | 0.100   |
|           | NB       | Left     | 0.385                 | 0.345       | 0.587         | 0.370     | 0.300   |
|           |          | Thru     | 0.039                 | 0.139       | 0.021         | 0.075     | 0.250   |
|           |          | Right    | 0.577                 | 0.517       | 0.392         | 0.555     | 0.450   |
|           |          | Left     | 0.545                 | 0.487       | 0.267         | 0.400     | 0.450   |
|           | SB       | Thru     | 0.091                 | 0.189       | 0.333         | 0.333     | 0.250   |
| 0.9       |          | Right    | 0.364                 | 0.324       | 0.400         | 0.267     | 0.300   |
| 0.9       |          | Left     | 0.121                 | 0.190       | 0.014         | 0.051     | 0.100   |
|           | EB       | Thru     | 0.724                 | 0.667       | 0.812         | 0.781     | 0.800   |
|           |          | Right    | 0.155                 | 0.143       | 0.174         | 0.167     | 0.100   |
|           |          | Left     | 0.155                 | 0.143       | 0.174         | 0.167     | 0.100   |
|           | WB       | Thru     | 0.724                 | 0.667       | 0.812         | 0.781     | 0.800   |
|           |          | Right    | 0.121                 | 0.190       | 0.014         | 0.051     | 0.100   |

# Appendix C. Signal Timing Plans

| ,   | OD             | Spacing and  |     |    |     | Gre | en Tim | ne Split | : (s) |     |    |    | Cycle      |
|-----|----------------|--------------|-----|----|-----|-----|--------|----------|-------|-----|----|----|------------|
| v/c | Pattern        | Signal       | 1   | 2  | 22  | 3   | 4      | 5        | 6     | 26  | 7  | 8  | Length (s) |
|     |                | +300_T3Lag   | 23  | 32 | 94  | 35  | 62     | 30       | 25    | 55  | 35 | 27 | 90         |
|     |                | +900_4CSplit | 9   | 35 | 9   | 32  | 9      | 16       | 28    | 9   | 44 | 9  | 120        |
|     | Superstore     | -300_3Lag    | 30  | 25 | 41  | 35  | 9      | 23       | 32    | 30  | 35 | 9  | 90         |
|     |                | -900_3Lead   | 30  | 25 | 41  | 35  | 9      | 23       | 32    | 30  | 35 | 9  | 90         |
|     |                | +300_T3Lag   | 23  | 32 | 94  | 35  | 9      | 30       | 25    | 37  | 35 | 9  | 90         |
|     | Hybrid Gas     | +900_4CSplit | 9   | 32 | 32  | 32  | 9      | 9        | 32    | 9   | 37 | 9  | 110        |
|     | Station        | -300_3Lag    | 10  | 35 | 32  | 35  | 9      | 13       | 32    | 25  | 35 | 9  | 80         |
|     |                | -900_3Lead   | 27  | 28 | 32  | 35  | 9      | 19       | 36    | 25  | 35 | 9  | 90         |
|     |                | +300_T3Lag   | 43  | 32 | 92  | 35  | 9      | 50       | 25    | 114 | 35 | 9  | 110        |
| 0.7 | DecANA         | +900_4CSplit | 9   | 32 | 9   | 32  | 9      | 9        | 32    | 13  | 37 | 9  | 110        |
| 0.7 | .7 ResAM       | -300_3Lag    | 20  | 45 | 32  | 35  | 9      | 33       | 32    | 55  | 35 | 9  | 100        |
|     |                | -900_LRSplit | 32  | 25 | 40  | 36  | 9      | 23       | 34    | 55  | 37 | 9  | 130        |
|     |                | +300_T3Lag   | 18  | 47 | 104 | 35  | 9      | 40       | 25    | 26  | 35 | 27 | 100        |
|     | ResPM          | +900_4CSplit | 9   | 32 | 88  | 32  | 9      | 9        | 32    | 11  | 37 | 9  | 110        |
|     | Respiri        | -300_3Lag    | 16  | 49 | 32  | 35  | 9      | 24       | 41    | 25  | 35 | 9  | 100        |
|     |                | -900_3Lead   | 129 | 25 | 145 | 36  | 194    | 122      | 32    | 75  | 36 | 9  | 190        |
|     |                | +300_T3Lag   | 29  | 36 | 104 | 35  | 9      | 40       | 25    | 45  | 35 | 16 | 100        |
|     | Dealian        | +900_4CSplit | 9   | 32 | 21  | 32  | 9      | 10       | 31    | 9   | 37 | 32 | 110        |
|     | Realign        | -300_3Lag    | 34  | 31 | 38  | 35  | 9      | 15       | 50    | 31  | 35 | 9  | 100        |
|     |                | -900_3Lead   | 30  | 25 | 33  | 35  | 9      | 15       | 40    | 27  | 35 | 9  | 90         |
|     |                | +300_T3Lag   | 37  | 38 | 114 | 35  | 15     | 49       | 26    | 46  | 35 | 22 | 110        |
|     | Cum a mat a ma | +900_4CSplit | 10  | 32 | 9   | 32  | 9      | 9        | 33    | 9   | 46 | 9  | 120        |
|     | Superstore     | -300_3Lag    | 40  | 25 | 44  | 35  | 9      | 33       | 32    | 30  | 35 | 9  | 100        |
|     |                | -900_3Lead   | 40  | 25 | 44  | 35  | 9      | 27       | 38    | 30  | 35 | 9  | 100        |
|     |                | +300_T3Lag   | 23  | 52 | 114 | 35  | 9      | 50       | 25    | 36  | 35 | 23 | 110        |
|     | Hybrid Gas     | +900_4CSplit | 9   | 36 | 34  | 33  | 9      | 13       | 32    | 9   | 42 | 9  | 120        |
|     | Station        | -300_3Lag    | 31  | 44 | 35  | 35  | 9      | 43       | 32    | 28  | 35 | 9  | 110        |
|     |                | -900_3Lead   | 28  | 47 | 35  | 35  | 9      | 43       | 32    | 28  | 35 | 9  | 110        |
|     |                | +300_T3Lag   | 39  | 36 | 95  | 35  | 9      | 50       | 25    | 114 | 35 | 9  | 110        |
| 0.9 | ResAM          | +900_4CSplit | 9   | 32 | 12  | 32  | 9      | 9        | 32    | 16  | 37 | 9  | 110        |
| 0.9 | Resalvi        | -300_3Lag    | 54  | 31 | 35  | 35  | 9      | 53       | 32    | 83  | 35 | 9  | 110        |
|     |                | -900_LRSplit | 32  | 25 | 38  | 37  | 10     | 9        | 48    | 39  | 36 | 9  | 130        |
|     |                | +300_T3Lag   | 20  | 55 | 114 | 35  | 9      | 50       | 25    | 25  | 35 | 31 | 110        |
|     | ResPM          | +900_4CSplit | 9   | 32 | 96  | 32  | 9      | 9        | 32    | 14  | 37 | 9  | 110        |
|     | Respin         | -300_3Lag    | 19  | 56 | 35  | 35  | 9      | 41       | 34    | 26  | 35 | 9  | 110        |
|     |                | -900_3Lead   | 19  | 56 | 35  | 35  | 9      | 41       | 34    | 26  | 35 | 9  | 110        |
|     |                | +300_T3Lag   | 22  | 53 | 114 | 35  | 10     | 38       | 37    | 47  | 35 | 32 | 110        |
|     | Poplian        | +900_4CSplit | 10  | 32 | 18  | 32  | 9      | 9        | 33    | 9   | 36 | 9  | 110        |
|     | Realign        | -300_3Lag    | 48  | 25 | 52  | 37  | 9      | 25       | 48    | 35  | 37 | 9  | 110        |
|     |                | -900_3Lead   | 30  | 45 | 35  | 35  | 9      | 43       | 32    | 33  | 35 | 9  | 110        |

Appendix-C1. Signal timing plans for offset T-intersections tested in VISSIM microsimulation

|     | OD                    | Spacing and | Green | Time Sp | lit (s) |    |    |    |    |    | Cycle      |
|-----|-----------------------|-------------|-------|---------|---------|----|----|----|----|----|------------|
| v/c | Pattern               | Signal      | 1     | 2       | 3       | 4  | 5  | 6  | 7  | 8  | Length (s) |
|     | Superstore            | +000_4C     | 18    | 31      | 16      | 35 | 25 | 24 | 20 | 31 | 100        |
| 0.7 | Hybrid Gas<br>Station | +000_4C     | 13    | 31      | 15      | 31 | 20 | 24 | 15 | 31 | 90         |
| 0.7 | ResAM                 | +000_4C     | 17    | 31      | 21      | 31 | 13 | 35 | 21 | 31 | 100        |
|     | ResPM                 | +000_4C     | 12    | 31      | 16      | 31 | 19 | 24 | 16 | 31 | 90         |
|     | Realign               | +000_4C     | 14    | 31      | 14      | 31 | 19 | 26 | 14 | 31 | 90         |
|     | Superstore            | +000_4C     | 11    | 31      | 17      | 31 | 18 | 24 | 17 | 31 | 90         |
| 0.0 | Hybrid Gas<br>Station | +000_4C     | 13    | 31      | 15      | 31 | 20 | 24 | 15 | 31 | 90         |
| 0.9 | ResAM                 | +000_4C     | 22    | 31      | 23      | 34 | 9  | 44 | 26 | 31 | 110        |
|     | ResPM                 | +000_4C     | 14    | 31      | 14      | 31 | 15 | 30 | 12 | 33 | 90         |
|     | Realign               | +000_4C     | 12    | 31      | 16      | 31 | 15 | 28 | 16 | 31 | 90         |

Appendix-C2. Signal timing plans for 4-leg intersection tested in VISSIM microsimulation

# Appendix D. Simulation Scenarios

| Model # | v/c | Volume                  | Spacing | Signal Timing | File Name                 |
|---------|-----|-------------------------|---------|---------------|---------------------------|
| 1       | 0.7 | Superstore              | -1200   | 3Lead         | 1_Tgt_0.71200_3Lead       |
| 2       | 0.7 | Superstore              | -900    | 3Lead         | 2_Tgt_0.7900_3Lead        |
| 3       | 0.7 | Superstore              | -600    | 3Lag          | 3_Tgt_0.7600_3Lag         |
| 4       | 0.7 | Superstore              | -300    | 3Lag          | 4_Tgt_0.7300_3Lag         |
| 5       | 0.7 | Superstore              | 0       | 4C            | 5_Tgt_0.7_0_4C            |
| 6       | 0.7 | Superstore              | 300     | T3Lag         | 6_Tgt_0.7_300_T3Lag       |
| 7       | 0.7 | Superstore              | 600     | T3Lag         | 7_Tgt_0.7_600_T3Lag       |
| 8       | 0.7 | Superstore              | 900     | 4CSplit       | 8_Tgt_0.7_900_4CSplit     |
| 9       | 0.7 | Superstore              | 1200    | 4CSplit       | 9_Tgt_0.7_1200_4CSplit    |
| 10      | 0.7 | Hybrid Gas Station      | -1200   | 3Lead         | 10_Shz_0.71200_3Lead      |
| 11      | 0.7 | ,<br>Hybrid Gas Station | -900    | 3Lead         |                           |
| 12      | 0.7 | Hybrid Gas Station      | -600    | 3Lag          | 12_Shz_0.7600_3Lag        |
| 13      | 0.7 | ,<br>Hybrid Gas Station | -300    | 3Lag          | 13_Shz_0.7300_3Lag        |
| 14      | 0.7 | ,<br>Hybrid Gas Station | 0       | 4C            | 14_Shz_0.7_0_4C           |
| 15      | 0.7 | ,<br>Hybrid Gas Station | 300     | T3Lag         |                           |
| 16      | 0.7 | ,<br>Hybrid Gas Station | 600     | T3Lag         |                           |
| 17      | 0.7 | ,<br>Hybrid Gas Station | 900     | 4CSplit       |                           |
| 18      | 0.7 | ,<br>Hybrid Gas Station | 1200    | 4CSplit       | 18_Shz_0.7_1200_4CSplit   |
| 19      | 0.7 | ResAM                   | -1200   | LRSplit       |                           |
| 20      | 0.7 | ResAM                   | -900    | LRSplit       |                           |
| 21      | 0.7 | ResAM                   | -600    | 3Lag          | 21_ResAM_0.7600_3Lag      |
| 22      | 0.7 | ResAM                   | -300    | 3Lag          | 22_ResAM_0.7300_3Lag      |
| 23      | 0.7 | ResAM                   | 0       | 4C            | 23_ResAM_0.7_0_4C         |
| 24      | 0.7 | ResAM                   | 300     | T3Lag         | 24_ResAM_0.7_300_T3Lag    |
| 25      | 0.7 | ResAM                   | 600     | T3Lag         | 25_ResAM_0.7_600_T3Lag    |
| 26      | 0.7 | ResAM                   | 900     | 4CSplit       | 26_ResAM_0.7_900_4CSplit  |
| 27      | 0.7 | ResAM                   | 1200    | 4CSplit       | 27_ResAM_0.7_1200_4CSplit |
| 28      | 0.7 | ResPM                   | -1200   | 3Lead         | 28_ResPM_0.71200_3Lead    |
| 29      | 0.7 | ResPM                   | -900    | 3Lead         |                           |
| 30      | 0.7 | ResPM                   | -600    | 3Lag          |                           |
| 31      | 0.7 | ResPM                   | -300    | 3Lag          | 31_ResPM_0.7300_3Lag      |
| 32      | 0.7 | ResPM                   | 0       | 4C            | 32_ResPM_0.7_0_4C         |
| 33      | 0.7 | ResPM                   | 300     | T3Lag         |                           |
| 34      | 0.7 | ResPM                   | 600     | T3Lag         | 34_ResPM_0.7_600_T3Lag    |
| 35      | 0.7 | ResPM                   | 900     | 4CSplit       | 35_ResPM_0.7_900_4CSplit  |
| 36      | 0.7 | ResPM                   | 1200    | 4CSplit       | 36_ResPM_0.7_1200_4CSplit |
| 37      | 0.7 | Realign                 | -1200   | 3Lead         | 37_Realign_0.71200_3Lead  |

| Model # | v/c | Volume             | Spacing | Signal Timing | File Name                   |
|---------|-----|--------------------|---------|---------------|-----------------------------|
| 38      | 0.7 | Realign            | -900    | 3Lead         | 38_Realign_0.7900_3Lead     |
| 39      | 0.7 | Realign            | -600    | 3Lag          | 39_Realign_0.7600_3Lag      |
| 40      | 0.7 | Realign            | -300    | 3Lag          | 40_Realign_0.7300_3Lag      |
| 41      | 0.7 | Realign            | 0       | 4C            | 41_Realign_0.7_0_4C         |
| 42      | 0.7 | Realign            | 300     | T3Lag         | 42_Realign_0.7_300_T3Lag    |
| 43      | 0.7 | Realign            | 600     | T3Lag         | 43_Realign_0.7_600_T3Lag    |
| 44      | 0.7 | Realign            | 900     | 4CSplit       | 44_Realign_0.7_900_4CSplit  |
| 45      | 0.7 | Realign            | 1200    | 4CSplit       | 45_Realign_0.7_1200_4CSplit |
| 46      | 0.9 | Superstore         | -1200   | 3Lead         | 46_Tgt_0.91200_3Lead        |
| 47      | 0.9 | Superstore         | -900    | 3Lead         | 47_Tgt_0.9900_3Lead         |
| 48      | 0.9 | Superstore         | -600    | 3Lag          | 48_Tgt_0.9600_3Lag          |
| 49      | 0.9 | Superstore         | -300    | 3Lag          | 49_Tgt_0.9300_3Lag          |
| 50      | 0.9 | Superstore         | 0       | 4C            | 50_Tgt_0.9_0_4C             |
| 51      | 0.9 | Superstore         | 300     | T3Lag         | 51_Tgt_0.9_300_T3Lag        |
| 52      | 0.9 | Superstore         | 600     | T3Lag         | 52_Tgt_0.9_600_T3Lag        |
| 53      | 0.9 | Superstore         | 900     | 4CSplit       | 53_Tgt_0.9_900_4CSplit      |
| 54      | 0.9 | Superstore         | 1200    | 4CSplit       | 54_Tgt_0.9_1200_4CSplit     |
| 55      | 0.9 | Hybrid Gas Station | -1200   | 3Lead         | 55_Shz_0.91200_3Lead        |
| 56      | 0.9 | Hybrid Gas Station | -900    | 3Lead         | 56_Shz_0.9900_3Lead         |
| 57      | 0.9 | Hybrid Gas Station | -600    | 3Lag          | 57_Shz_0.9600_3Lag          |
| 58      | 0.9 | Hybrid Gas Station | -300    | 3Lag          | 58_Shz_0.9300_3Lag          |
| 59      | 0.9 | Hybrid Gas Station | 0       | 4C            | 59_Shz_0.9_0_4C             |
| 60      | 0.9 | Hybrid Gas Station | 300     | T3Lag         | 60_Shz_0.9_300_T3Lag        |
| 61      | 0.9 | Hybrid Gas Station | 600     | T3Lag         | 61_Shz_0.9_600_T3Lag        |
| 62      | 0.9 | Hybrid Gas Station | 900     | 4CSplit       | 62_Shz_0.9_900_4CSplit      |
| 63      | 0.9 | Hybrid Gas Station | 1200    | 4CSplit       | 63_Shz_0.9_1200_4CSplit     |
| 64      | 0.9 | ResAM              | -1200   | LRSplit       | 64_ResAM_0.91200_LRSplit    |
| 65      | 0.9 | ResAM              | -900    | LRSplit       | 65_ResAM_0.9900_LRSplit     |
| 66      | 0.9 | ResAM              | -600    | 3Lag          | 66_ResAM_0.9600_3Lag        |
| 67      | 0.9 | ResAM              | -300    | 3Lag          | 67_ResAM_0.9300_3Lag        |
| 68      | 0.9 | ResAM              | 0       | 4C            | 68_ResAM_0.9_0_4C           |
| 69      | 0.9 | ResAM              | 300     | T3Lag         | 69_ResAM_0.9_300_T3Lag      |
| 70      | 0.9 | ResAM              | 600     | T3Lag         | 70_ResAM_0.9_600_T3Lag      |
| 71      | 0.9 | ResAM              | 900     | 4CSplit       | 71_ResAM_0.9_900_4CSplit    |
| 72      | 0.9 | ResAM              | 1200    | 4CSplit       | 72_ResAM_0.9_1200_4CSplit   |
| 73      | 0.9 | ResPM              | -1200   | 3Lead         | 73_ResPM_0.91200_3Lead      |
| 74      | 0.9 | ResPM              | -900    | 3Lead         | 74_ResPM_0.9900_3Lead       |
| 75      | 0.9 | ResPM              | -600    | 3Lag          | 75_ResPM_0.9600_3Lag        |
| 76      | 0.9 | ResPM              | -300    | 3Lag          | 76_ResPM_0.9300_3Lag        |

| Model # | v/c | Volume  | Spacing | Signal Timing | File Name                   |
|---------|-----|---------|---------|---------------|-----------------------------|
| 77      | 0.9 | ResPM   | 0       | 4C            | 77_ResPM_0.9_0_4C           |
| 78      | 0.9 | ResPM   | 300     | T3Lag         | 78_ResPM_0.9_300_T3Lag      |
| 79      | 0.9 | ResPM   | 600     | T3Lag         | 79_ResPM_0.9_600_T3Lag      |
| 80      | 0.9 | ResPM   | 900     | 4CSplit       | 80_ResPM_0.9_900_4CSplit    |
| 81      | 0.9 | ResPM   | 1200    | 4CSplit       | 81_ResPM_0.9_1200_4CSplit   |
| 82      | 0.9 | Realign | -1200   | 3Lead         | 82_Realign_0.91200_3Lead    |
| 83      | 0.9 | Realign | -900    | 3Lead         | 83_Realign_0.9900_3Lead     |
| 84      | 0.9 | Realign | -600    | 3Lag          | 84_Realign_0.9600_3Lag      |
| 85      | 0.9 | Realign | -300    | 3Lag          | 85_Realign_0.9300_3Lag      |
| 86      | 0.9 | Realign | 0       | 4C            | 86_Realign_0.9_0_4C         |
| 87      | 0.9 | Realign | 300     | T3Lag         | 87_Realign_0.9_300_T3Lag    |
| 88      | 0.9 | Realign | 600     | T3Lag         | 88_Realign_0.9_600_T3Lag    |
| 89      | 0.9 | Realign | 900     | 4CSplit       | 89_Realign_0.9_900_4CSplit  |
| 90      | 0.9 | Realign | 1200    | 4CSplit       | 90_Realign_0.9_1200_4CSplit |

|          |                  | т               | able E1: v/    | ′c = 0.7; OD   | Pattern: S    | uperstore       |                 |                   |                    |
|----------|------------------|-----------------|----------------|----------------|---------------|-----------------|-----------------|-------------------|--------------------|
|          |                  |                 | Simulate       | d Queue Le     | ength (ft) fo | or each Spa     | cing Level      |                   |                    |
| Movement | -1200<br>(3Lead) | -900<br>(3Lead) | -600<br>(3Lag) | -300<br>(3Lag) | 0<br>(4C)     | +300<br>(T3Lag) | +600<br>(T3Lag) | +900<br>(4CSplit) | +1200<br>(4CSplit) |
| NBL      | 18.3             | 18.3            | 20.4           | 21.9           | 23.7          | 12.1            | 12.1            | 20.4              | 20.3               |
| NBT      | 18.3             | 18.3            | 20.4           | 21.9           | 18.2          | 12.1            | 12.1            | 20.4              | 20.3               |
| NBR      | 1.2              | 1.1             | 0.9            | 0.9            | 18.2          | 2.8             | 2.2             | 2.3               | 2.2                |
| SBL      | 72.0             | 72.2            | 74.8           | 77.5           | 147.1         | 35.8            | 35.7            | 68.1              | 68.2               |
| SBT      | 72.0             | 72.2            | 74.8           | 77.5           | 28.8          | 35.8            | 35.7            | 68.1              | 68.2               |
| SBR      | 1.2              | 1.2             | 1.1            | 1.2            | 28.8          | 2.2             | 2.2             | 2.9               | 2.8                |
| EBL      | 63.4             | 63.4            | 60.5           | 60.3           | 81.2          | 79.9            | 92.5            | 114.2             | 106.7              |
| EBT      | 16.8             | 16.8            | 17.2           | 17.6           | 46.6          | 58.6            | 52.3            | 80.9              | 80.0               |
| EBR      | 0.7              | 0.8             | 1.7            | 1.3            | 46.6          | 0.6             | 0.7             | 0.7               | 0.7                |
| WBL      | 15.4             | 15.4            | 10.3           | 10.3           | 17.8          | 27.6            | 25.2            | 17.2              | 15.8               |
| WBT      | 13.0             | 13.0            | 13.6           | 14.2           | 47.8          | 32.3            | 31.4            | 35.6              | 35.3               |
| WBR      | 5.7              | 6.4             | 4.9            | 4.1            | 47.8          | 3.5             | 3.3             | 3.6               | 3.6                |
| Movement |                  |                 |                | Queue Len      | gth divided   | d by Spacing    | 5               |                   |                    |
| EBTS     | 1.8%             | 2.3%            | 6.2%           | 12.0%          | 0.0%          | 2.2%            | 1.1%            | 1.0%              | 1.0%               |
| WBTS     | 1.6%             | 2.3%            | 3.4%           | 7.5%           | 0.0%          | 0.9%            | 0.4%            | 0.1%              | 0.1%               |
| Movement |                  | -<br>           | Maxi           | mum Queu       | e Length d    | ivided by S     | torage          |                   |                    |
| EBL      | n/a              | n/a             | n/a            | n/a            | n/a           | 278%            | 153%            | 94%               | 70%                |
| WBL      | n/a              | n/a             | n/a            | n/a            | n/a           | 146%            | 70%             | 46%               | 33%                |

# Appendix E. Queue Length Simulation Results

|          |                  | Table           | e E2: v/c = (  | 0.7; OD Pat    | tern: Hybr    | id Gas Stati    | on              |                   |                    |
|----------|------------------|-----------------|----------------|----------------|---------------|-----------------|-----------------|-------------------|--------------------|
|          |                  |                 | Simulate       | d Queue Le     | ength (ft) fo | or each Spa     | cing Level      |                   |                    |
| Movement | -1200<br>(3Lead) | -900<br>(3Lead) | -600<br>(3Lag) | -300<br>(3Lag) | 0<br>(4C)     | +300<br>(T3Lag) | +600<br>(T3Lag) | +900<br>(4CSplit) | +1200<br>(4CSplit) |
| NBL      | 18.4             | 18.4            | 15.0           | 15.2           | 28.4          | 16.8            | 16.9            | 24.8              | 24.8               |
| NBT      | 18.4             | 18.4            | 15.0           | 15.2           | 7.9           | 16.8            | 16.9            | 24.8              | 24.8               |
| NBR      | 2.1              | 2.1             | 1.9            | 2.1            | 7.9           | 2.5             | 2.3             | 2.1               | 2.1                |
| SBL      | 26.2             | 26.1            | 20.0           | 20.1           | 59.4          | 21.8            | 21.8            | 32.0              | 32.0               |
| SBT      | 26.2             | 26.1            | 20.0           | 20.1           | 6.4           | 21.8            | 21.8            | 32.0              | 32.0               |
| SBR      | 0.9              | 0.9             | 0.7            | 0.8            | 6.4           | 0.8             | 0.8             | 0.9               | 0.9                |
| EBL      | 39.6             | 39.7            | 57.4           | 57.7           | 38.1          | 19.8            | 16.6            | 52.0              | 46.7               |
| EBT      | 24.9             | 24.9            | 29.2           | 30.1           | 78.7          | 59.7            | 58.4            | 122.4             | 118.2              |
| EBR      | 0.7              | 0.6             | 2.2            | 1.7            | 78.7          | 1.0             | 1.0             | 2.0               | 2.0                |
| WBL      | 22.1             | 22.1            | 34.4           | 34.0           | 27.3          | 16.1            | 13.0            | 4.3               | 2.6                |
| WBT      | 15.7             | 15.7            | 18.3           | 18.8           | 50.8          | 45.4            | 44.9            | 50.4              | 50.4               |
| WBR      | 0.3              | 0.3             | 1.0            | 0.8            | 50.8          | 0.9             | 0.9             | 0.8               | 0.8                |
| Movement |                  |                 |                | Queue Len      | gth divided   | by Spacing      | 3               |                   |                    |
| EBTS     | 2.5%             | 3.2%            | 4.9%           | 8.8%           | 0.0%          | 3.1%            | 1.7%            | 2.6%              | 3.0%               |
| WBTS     | 2.2%             | 3.0%            | 4.2%           | 8.9%           | 0.0%          | 0.5%            | 0.2%            | 0.0%              | 0.0%               |
| Movement |                  |                 | Maxi           | mum Queu       | e Length d    | ivided by S     | orage           |                   |                    |
| EBL      | n/a              | n/a             | n/a            | n/a            | n/a           | 166%            | 68%             | 56%               | 41%                |
| WBL      | n/a              | n/a             | n/a            | n/a            | n/a           | 112%            | 56%             | 30%               | 18%                |

| Table E3: v/c = 0.7; OD Pattern: ResAM |                                                    |                   |                |                |           |                 |                 |                   |                    |
|----------------------------------------|----------------------------------------------------|-------------------|----------------|----------------|-----------|-----------------|-----------------|-------------------|--------------------|
|                                        | Simulated Queue Length (ft) for each Spacing Level |                   |                |                |           |                 |                 |                   |                    |
| Movement                               | -1200<br>(LRSplit)                                 | -900<br>(LRSplit) | -600<br>(3Lag) | -300<br>(3Lag) | 0<br>(4C) | +300<br>(T3Lag) | +600<br>(T3Lag) | +900<br>(4CSplit) | +1200<br>(4CSplit) |
| NBL                                    | 61.0                                               | 61.0              | 37.6           | 39.2           | 51.8      | 41.5            | 41.5            | 43.3              | 43.3               |
| NBT                                    | 61.0                                               | 61.0              | 37.6           | 39.2           | 4.9       | 41.5            | 41.5            | 43.3              | 43.3               |
| NBR                                    | 1.4                                                | 1.3               | 1.3            | 1.3            | 4.9       | 1.2             | 1.3             | 0.9               | 0.9                |
| SBL                                    | 22.1                                               | 22.1              | 13.9           | 13.9           | 10.0      | 6.7             | 6.6             | 7.1               | 7.1                |
| SBT                                    | 22.1                                               | 22.1              | 13.9           | 13.9           | 10.7      | 6.7             | 6.6             | 7.1               | 7.1                |
| SBR                                    | 0.6                                                | 0.6               | 0.5            | 0.5            | 10.7      | 1.5             | 1.3             | 1.2               | 1.2                |
| EBL                                    | 4.3                                                | 4.3               | 2.2            | 2.2            | 3.4       | 3.5             | 3.3             | 5.3               | 5.0                |
| EBT                                    | 13.9                                               | 13.9              | 18.4           | 19.0           | 74.9      | 41.5            | 41.4            | 67.4              | 66.2               |
| EBR                                    | 1.4                                                | 1.5               | 0.9            | 1.1            | 74.9      | 1.4             | 1.5             | 1.5               | 1.5                |
| WBL                                    | 52.1                                               | 52.2              | 58.5           | 58.6           | 73.2      | 49.4            | 43.2            | 7.7               | 5.8                |
| WBT                                    | 16.2                                               | 16.2              | 23.5           | 24.7           | 59.0      | 80.7            | 76.9            | 117.8             | 118.8              |
| WBR                                    | 0.0                                                | 0.0               | 0.0            | 0.0            | 59.0      | 0.0             | 0.0             | 0.1               | 0.1                |
| Movement                               | Queue Length divided by Spacing                    |                   |                |                |           |                 |                 |                   |                    |
| EBTS                                   | 1.4%                                               | 2.1%              | 4.3%           | 7.8%           | 0.0%      | 1.6%            | 0.8%            | 1.4%              | 1.6%               |
| WBTS                                   | 1.6%                                               | 2.1%              | 8.0%           | 18.3%          | 0.0%      | 0.8%            | 0.6%            | 0.0%              | 0.0%               |
| Movement                               | Maximum Queue Length divided by Storage            |                   |                |                |           |                 |                 |                   |                    |
| EBL                                    | n/a                                                | n/a               | n/a            | n/a            | n/a       | 43%             | 21%             | 16%               | 11%                |
| WBL                                    | n/a                                                | n/a               | n/a            | n/a            | n/a       | 242%            | 100%            | 41%               | 24%                |

|          |                  |                 | Table E4:      | v/c = 0.7; C   | D Pattern:    | ResPM           |                 |                   |                    |
|----------|------------------|-----------------|----------------|----------------|---------------|-----------------|-----------------|-------------------|--------------------|
|          |                  |                 | Simulate       | d Queue Le     | ength (ft) fo | or each Spa     | cing Level      |                   |                    |
| Movement | -1200<br>(3Lead) | -900<br>(3Lead) | -600<br>(3Lag) | -300<br>(3Lag) | 0<br>(4C)     | +300<br>(T3Lag) | +600<br>(T3Lag) | +900<br>(4CSplit) | +1200<br>(4CSplit) |
| NBL      | 72.1             | 72.3            | 27.9           | 28.9           | 30.8          | 22.1            | 22.1            | 27.0              | 27.0               |
| NBT      | 72.1             | 72.3            | 27.9           | 28.9           | 11.0          | 22.1            | 22.1            | 27.0              | 27.0               |
| NBR      | 3.4              | 3.3             | 2.6            | 2.9            | 11.0          | 4.2             | 4.1             | 3.4               | 3.4                |
| SBL      | 32.8             | 32.8            | 10.9           | 10.9           | 9.2           | 5.4             | 5.3             | 6.3               | 6.3                |
| SBT      | 32.8             | 32.8            | 10.9           | 10.9           | 4.5           | 5.4             | 5.3             | 6.3               | 6.3                |
| SBR      | 0.2              | 0.2             | 0.2            | 0.1            | 4.5           | 0.2             | 0.2             | 0.3               | 0.3                |
| EBL      | 36.1             | 36.1            | 13.1           | 13.1           | 15.0          | 11.1            | 11.1            | 26.4              | 24.3               |
| EBT      | 13.5             | 13.5            | 27.0           | 27.8           | 112.3         | 49.8            | 49.7            | 116.1             | 111.9              |
| EBR      | 1.5              | 1.7             | 1.2            | 1.4            | 112.3         | 1.3             | 1.2             | 3.3               | 2.9                |
| WBL      | 58.3             | 58.4            | 31.2           | 31.2           | 32.9          | 30.8            | 27.5            | 5.1               | 3.3                |
| WBT      | 7.6              | 7.6             | 14.1           | 14.3           | 40.5          | 71.3            | 69.2            | 58.3              | 58.0               |
| WBR      | 1.1              | 1.5             | 0.3            | 0.2            | 40.5          | 0.2             | 0.2             | 0.2               | 0.2                |
| Movement |                  |                 |                | Queue Len      | gth divided   | by Spacing      | 5               | •                 |                    |
| EBTS     | 1.7%             | 2.3%            | 4.5%           | 7.9%           | 0.0%          | 2.9%            | 1.6%            | 2.8%              | 3.2%               |
| WBTS     | 1.7%             | 2.5%            | 5.0%           | 11.0%          | 0.0%          | 0.1%            | 0.0%            | 0.0%              | 0.0%               |
| Movement |                  |                 | Maxi           | mum Queu       | e Length d    | ivided by St    | torage          |                   |                    |
| EBL      | n/a              | n/a             | n/a            | n/a            | n/a           | 96%             | 44%             | 38%               | 28%                |
| WBL      | n/a              | n/a             | n/a            | n/a            | n/a           | 138%            | 67%             | 34%               | 21%                |

|          |                  |                 | Table E5:      | v/c = 0.7; O   | D Pattern:    | Realign         |                 |                   |                    |
|----------|------------------|-----------------|----------------|----------------|---------------|-----------------|-----------------|-------------------|--------------------|
|          |                  |                 | Simulate       | d Queue Le     | ength (ft) fo | or each Spa     | cing Level      |                   |                    |
| Movement | -1200<br>(3Lead) | -900<br>(3Lead) | -600<br>(3Lag) | -300<br>(3Lag) | 0<br>(4C)     | +300<br>(T3Lag) | +600<br>(T3Lag) | +900<br>(4CSplit) | +1200<br>(4CSplit) |
| NBL      | 22.2             | 22.2            | 35.0           | 32.8           | 22.8          | 16.2            | 16.3            | 19.3              | 19.3               |
| NBT      | 22.2             | 22.2            | 35.0           | 32.8           | 20.1          | 16.2            | 16.3            | 19.3              | 19.3               |
| NBR      | 1.5              | 1.5             | 1.4            | 1.3            | 20.1          | 5.1             | 4.6             | 3.6               | 3.5                |
| SBL      | 35.3             | 35.5            | 58.2           | 48.8           | 59.3          | 25.3            | 25.3            | 29.2              | 29.2               |
| SBT      | 35.3             | 35.5            | 58.2           | 48.8           | 16.5          | 25.3            | 25.3            | 29.2              | 29.2               |
| SBR      | 0.7              | 0.7             | 0.8            | 0.7            | 16.5          | 1.5             | 1.4             | 1.6               | 1.6                |
| EBL      | 24.2             | 24.2            | 32.5           | 27.1           | 22.8          | 42.2            | 40.1            | 48.2              | 45.1               |
| EBT      | 26.6             | 26.7            | 22.0           | 25.1           | 72.2          | 59.9            | 58.1            | 125.0             | 124.2              |
| EBR      | 0.8              | 0.9             | 0.6            | 1.1            | 72.2          | 0.5             | 0.5             | 1.0               | 0.9                |
| WBL      | 14.4             | 14.5            | 11.6           | 9.9            | 14.8          | 28.1            | 25.8            | 9.0               | 8.3                |
| WBT      | 16.2             | 16.2            | 13.4           | 15.2           | 44.9          | 49.9            | 49.3            | 55.4              | 55.3               |
| WBR      | 3.1              | 3.8             | 0.9            | 1.3            | 44.9          | 0.4             | 0.4             | 0.4               | 0.4                |
| Movement |                  |                 |                | Queue Len      | gth divided   | d by Spacing    | 3               | ·                 |                    |
| EBTS     | 2.4%             | 2.9%            | 9.0%           | 19.3%          | 0.0%          | 2.2%            | 1.1%            | 2.5%              | 3.1%               |
| WBTS     | 1.8%             | 2.2%            | 3.4%           | 7.5%           | 0.0%          | 0.4%            | 0.2%            | 0.0%              | 0.0%               |
| Movement |                  | -<br>           | Maxi           | mum Queu       | e Length d    | ivided by S     | torage          | ·                 |                    |
| EBL      | n/a              | n/a             | n/a            | n/a            | n/a           | 241%            | 84%             | 59%               | 43%                |
| WBL      | n/a              | n/a             | n/a            | n/a            | n/a           | 146%            | 69%             | 33%               | 23%                |

|          |                  | т               | able E6: v/    | c = 0.9; OD    | Pattern: S    | uperstore       |                 |                   |                    |
|----------|------------------|-----------------|----------------|----------------|---------------|-----------------|-----------------|-------------------|--------------------|
|          |                  |                 | Simulate       | d Queue Le     | ength (ft) fo | or each Spa     | cing Level      |                   |                    |
| Movement | -1200<br>(3Lead) | -900<br>(3Lead) | -600<br>(3Lag) | -300<br>(3Lag) | 0<br>(4C)     | +300<br>(T3Lag) | +600<br>(T3Lag) | +900<br>(4CSplit) | +1200<br>(4CSplit) |
| NBL      | 31.6             | 31.6            | 33.2           | 34.8           | 31.9          | 27.6            | 27.5            | 32.8              | 32.8               |
| NBT      | 31.6             | 31.6            | 33.2           | 34.8           | 19.4          | 27.6            | 27.5            | 32.8              | 32.8               |
| NBR      | 3.9              | 3.8             | 3.5            | 3.5            | 19.4          | 11.3            | 8.7             | 7.9               | 7.6                |
| SBL      | 112.0            | 112.6           | 120.6          | 164.4          | 279.2         | 55.8            | 56.3            | 67.2              | 67.2               |
| SBT      | 112.0            | 112.6           | 120.6          | 164.4          | 27.3          | 55.8            | 56.3            | 67.2              | 67.2               |
| SBR      | 1.9              | 1.9             | 1.7            | 1.9            | 27.3          | 4.2             | 4.1             | 4.3               | 4.3                |
| EBL      | 83.8             | 83.7            | 77.5           | 77.4           | 114.2         | 78.3            | 65.2            | 105.9             | 98.5               |
| EBT      | 27.6             | 27.6            | 28.5           | 31.1           | 185.5         | 124.8           | 89.8            | 218.8             | 208.8              |
| EBR      | 2.3              | 2.6             | 7.4            | 6.2            | 185.5         | 3.6             | 3.1             | 11.0              | 11.5               |
| WBL      | 30.3             | 30.3            | 20.7           | 20.7           | 54.6          | 49.0            | 44.4            | 19.6              | 17.4               |
| WBT      | 18.0             | 18.0            | 18.6           | 19.4           | 89.5          | 71.2            | 66.8            | 66.5              | 66.3               |
| WBR      | 5.8              | 6.8             | 3.2            | 3.4            | 89.5          | 4.4             | 4.3             | 3.4               | 3.4                |
| Movement |                  |                 |                | Queue Len      | gth divideo   | d by Spacing    | 5               | ·                 |                    |
| EBTS     | 3.2%             | 4.3%            | 13.1%          | 25.7%          | 0.0%          | 3.4%            | 1.6%            | 2.7%              | 2.8%               |
| WBTS     | 3.0%             | 4.3%            | 5.9%           | 12.8%          | 0.0%          | 0.8%            | 0.3%            | 0.1%              | 0.1%               |
| Movement |                  |                 | Maxii          | num Queu       | e Length d    | ivided by S     | torage          |                   |                    |
| EBL      | n/a              | n/a             | n/a            | n/a            | n/a           | 311%            | 146%            | 89%               | 67%                |
| WBL      | n/a              | n/a             | n/a            | n/a            | n/a           | 204%            | 92%             | 51%               | 37%                |

|          |                  | Table           | e E7: v/c = (  | 0.9; OD Pat    | tern: Hybri   | id Gas Stati    | on              |                   |                    |
|----------|------------------|-----------------|----------------|----------------|---------------|-----------------|-----------------|-------------------|--------------------|
|          |                  |                 | Simulate       | d Queue Le     | ength (ft) fo | or each Spa     | cing Level      |                   |                    |
| Movement | -1200<br>(3Lead) | -900<br>(3Lead) | -600<br>(3Lag) | -300<br>(3Lag) | 0<br>(4C)     | +300<br>(T3Lag) | +600<br>(T3Lag) | +900<br>(4CSplit) | +1200<br>(4CSplit) |
| NBL      | 33.9             | 33.9            | 34.1           | 35.0           | 38.2          | 30.6            | 30.5            | 36.8              | 36.7               |
| NBT      | 33.9             | 33.9            | 34.1           | 35.0           | 11.9          | 30.6            | 30.5            | 36.8              | 36.7               |
| NBR      | 5.9              | 5.9             | 5.8            | 6.0            | 11.9          | 7.8             | 7.1             | 6.7               | 6.6                |
| SBL      | 40.3             | 40.3            | 40.8           | 41.7           | 62.5          | 32.6            | 32.5            | 38.1              | 38.1               |
| SBT      | 40.3             | 40.3            | 40.8           | 41.7           | 6.8           | 32.6            | 32.5            | 38.1              | 38.1               |
| SBR      | 1.1              | 1.1             | 1.1            | 1.1            | 6.8           | 1.0             | 0.9             | 1.2               | 1.2                |
| EBL      | 50.1             | 50.0            | 33.8           | 33.8           | 28.9          | 10.8            | 8.3             | 58.0              | 53.2               |
| EBT      | 30.0             | 30.0            | 32.2           | 33.8           | 912.8         | 78.6            | 78.1            | 269.9             | 251.8              |
| EBR      | 0.9              | 0.9             | 2.6            | 2.6            | 912.8         | 3.0             | 2.9             | 20.9              | 15.3               |
| WBL      | 39.3             | 39.3            | 38.2           | 38.1           | 48.5          | 38.9            | 34.0            | 11.7              | 8.2                |
| WBT      | 16.9             | 16.9            | 17.7           | 18.4           | 75.5          | 131.6           | 120.8           | 67.3              | 67.5               |
| WBR      | 0.4              | 0.3             | 0.6            | 0.8            | 75.5          | 1.7             | 1.5             | 0.8               | 0.8                |
| Movement |                  |                 |                | Queue Len      | gth divideo   | by Spacing      | 3               |                   |                    |
| EBTS     | 3.5%             | 4.7%            | 7.4%           | 14.1%          | 0.0%          | 3.6%            | 1.9%            | 3.4%              | 3.5%               |
| WBTS     | 3.2%             | 4.7%            | 8.8%           | 19.7%          | 0.0%          | 0.4%            | 0.2%            | 0.0%              | 0.0%               |
| Movement |                  |                 | Maxi           | mum Queu       | e Length d    | ivided by S     | orage           |                   |                    |
| EBL      | n/a              | n/a             | n/a            | n/a            | n/a           | 136%            | 55%             | 56%               | 43%                |
| WBL      | n/a              | n/a             | n/a            | n/a            | n/a           | 171%            | 77%             | 45%               | 30%                |

|          |                    |                   | Table E8:      | v/c = 0.9; C   | D Pattern:    | ResAM           |                 |                   |                    |
|----------|--------------------|-------------------|----------------|----------------|---------------|-----------------|-----------------|-------------------|--------------------|
|          |                    |                   | Simulate       | d Queue Le     | ength (ft) fo | or each Spa     | cing Level      |                   |                    |
| Movement | -1200<br>(LRSplit) | -900<br>(LRSplit) | -600<br>(3Lag) | -300<br>(3Lag) | 0<br>(4C)     | +300<br>(T3Lag) | +600<br>(T3Lag) | +900<br>(4CSplit) | +1200<br>(4CSplit) |
| NBL      | 94.3               | 94.0              | 63.3           | 75.1           | 84.6          | 56.8            | 56.9            | 58.6              | 58.5               |
| NBT      | 94.3               | 94.0              | 63.3           | 75.1           | 7.1           | 56.8            | 56.9            | 58.6              | 58.5               |
| NBR      | 2.2                | 2.2               | 2.3            | 2.5            | 7.1           | 2.3             | 2.5             | 2.0               | 2.0                |
| SBL      | 22.1               | 22.1              | 16.8           | 16.8           | 11.9          | 6.1             | 6.1             | 7.1               | 7.1                |
| SBT      | 22.1               | 22.1              | 16.8           | 16.8           | 13.2          | 6.1             | 6.1             | 7.1               | 7.1                |
| SBR      | 0.6                | 0.7               | 0.8            | 0.8            | 13.2          | 3.5             | 2.3             | 1.7               | 1.7                |
| EBL      | 4.7                | 4.8               | 2.5            | 2.5            | 3.2           | 2.7             | 2.7             | 4.5               | 4.1                |
| EBT      | 19.3               | 19.3              | 24.4           | 25.2           | 482.6         | 64.6            | 64.7            | 99.7              | 97.7               |
| EBR      | 3.9                | 3.9               | 3.4            | 3.3            | 482.6         | 3.6             | 3.5             | 5.4               | 5.2                |
| WBL      | 85.0               | 84.7              | 68.7           | 68.5           | 97.3          | 78.3            | 61.8            | 7.9               | 6.9                |
| WBT      | 24.3               | 24.4              | 30.8           | 38.8           | 92.0          | 446.7           | 251.3           | 966.5             | 857.9              |
| WBR      | 0.0                | 0.0               | 0.0            | 0.0            | 92.0          | 0.0             | 0.0             | 0.1               | 0.1                |
| Movement |                    |                   |                | Queue Len      | gth divided   | by Spacing      | 3               | •                 |                    |
| EBTS     | 1.8%               | 3.0%              | 7.1%           | 12.9%          | 0.0%          | 2.4%            | 1.1%            | 2.5%              | 3.0%               |
| WBTS     | 2.2%               | 3.0%              | 10.3%          | 24.5%          | 0.0%          | 2.5%            | 1.1%            | 0.0%              | 0.0%               |
| Movement |                    |                   | Maxi           | mum Queu       | e Length d    | ivided by S     | orage           |                   |                    |
| EBL      | n/a                | n/a               | n/a            | n/a            | n/a           | 38%             | 19%             | 13%               | 10%                |
| WBL      | n/a                | n/a               | n/a            | n/a            | n/a           | 277%            | 147%            | 39%               | 25%                |

|          |                  |                 | Table E9:      | v/c = 0.9; C   | D Pattern     | : ResPM         |                 |                   |                    |
|----------|------------------|-----------------|----------------|----------------|---------------|-----------------|-----------------|-------------------|--------------------|
|          |                  |                 | Simulate       | d Queue Le     | ength (ft) fo | or each Spa     | cing Level      |                   |                    |
| Movement | -1200<br>(3Lead) | -900<br>(3Lead) | -600<br>(3Lag) | -300<br>(3Lag) | 0<br>(4C)     | +300<br>(T3Lag) | +600<br>(T3Lag) | +900<br>(4CSplit) | +1200<br>(4CSplit) |
| NBL      | 39.7             | 39.7            | 40.6           | 44.6           | 44.0          | 32.8            | 32.9            | 34.4              | 34.5               |
| NBT      | 39.7             | 39.7            | 40.6           | 44.6           | 14.5          | 32.8            | 32.9            | 34.4              | 34.5               |
| NBR      | 6.9              | 6.7             | 6.5            | 7.2            | 14.5          | 10.7            | 10.5            | 6.9               | 7.4                |
| SBL      | 13.3             | 13.3            | 12.9           | 12.9           | 9.3           | 6.6             | 6.6             | 6.3               | 6.3                |
| SBT      | 13.3             | 13.3            | 12.9           | 12.9           | 4.5           | 6.6             | 6.6             | 6.3               | 6.3                |
| SBR      | 0.2              | 0.2             | 0.1            | 0.1            | 4.5           | 0.2             | 0.2             | 0.3               | 0.3                |
| EBL      | 19.5             | 19.4            | 9.7            | 9.6            | 9.7           | 10.4            | 10.6            | 23.3              | 21.6               |
| EBT      | 34.3             | 34.3            | 35.8           | 37.3           | 1284.3        | 75.4            | 75.3            | 990.7             | 796.6              |
| EBR      | 1.7              | 1.4             | 3.4            | 3.4            | 1284.3        | 3.7             | 3.6             | 516.1             | 341.2              |
| WBL      | 49.7             | 49.7            | 48.1           | 47.8           | 50.2          | 49.8            | 47.0            | 5.5               | 3.4                |
| WBT      | 16.8             | 16.8            | 17.5           | 19.1           | 50.9          | 264.7           | 234.0           | 82.7              | 82.7               |
| WBR      | 0.4              | 0.6             | 0.3            | 0.3            | 50.9          | 0.4             | 0.4             | 0.2               | 0.1                |
| Movement |                  |                 |                | Queue Len      | gth divided   | by Spacing      | 3               |                   |                    |
| EBTS     | 2.8%             | 3.1%            | 6.7%           | 11.8%          | 0.0%          | 4.0%            | 2.1%            | 4.7%              | 5.7%               |
| WBTS     | 2.6%             | 3.5%            | 12.4%          | 28.9%          | 0.0%          | 0.1%            | 0.0%            | 0.0%              | 0.0%               |
| Movement |                  |                 | Maxi           | mum Queu       | e Length d    | ivided by S     | torage          |                   |                    |
| EBL      | n/a              | n/a             | n/a            | n/a            | n/a           | 106%            | 42%             | 36%               | 26%                |
| WBL      | n/a              | n/a             | n/a            | n/a            | n/a           | 182%            | 87%             | 36%               | 21%                |

|          |                  |                 | Table E10:     | v/c = 0.9; (   | DD Pattern    | : Realign       |                 |                   |                    |
|----------|------------------|-----------------|----------------|----------------|---------------|-----------------|-----------------|-------------------|--------------------|
|          |                  |                 | Simulate       | d Queue Le     | ength (ft) fo | or each Spa     | cing Level      |                   |                    |
| Movement | -1200<br>(3Lead) | -900<br>(3Lead) | -600<br>(3Lag) | -300<br>(3Lag) | 0<br>(4C)     | +300<br>(T3Lag) | +600<br>(T3Lag) | +900<br>(4CSplit) | +1200<br>(4CSplit) |
| NBL      | 41.7             | 41.7            | 44.3           | 50.2           | 27.9          | 22.7            | 22.7            | 24.1              | 24.1               |
| NBT      | 41.7             | 41.7            | 44.3           | 50.2           | 28.1          | 22.7            | 22.7            | 24.1              | 24.1               |
| NBR      | 3.4              | 3.4             | 3.1            | 2.8            | 28.1          | 16.4            | 12.9            | 7.2               | 7.0                |
| SBL      | 106.1            | 107.4           | 296.3          | 743.4          | 90.7          | 40.7            | 40.6            | 40.0              | 40.1               |
| SBT      | 106.1            | 107.4           | 296.3          | 743.4          | 23.8          | 40.7            | 40.6            | 40.0              | 40.1               |
| SBR      | 1.5              | 1.5             | 1.3            | 1.0            | 23.8          | 4.2             | 3.9             | 3.8               | 3.9                |
| EBL      | 36.8             | 36.9            | 36.6           | 36.4           | 30.5          | 87.0            | 60.0            | 59.0              | 55.6               |
| EBT      | 29.3             | 29.4            | 63.3           | 79.8           | 353.3         | 111.1           | 82.2            | 1143.9            | 1110.6             |
| EBR      | 1.6              | 2.1             | 18.2           | 5.2            | 353.3         | 1.1             | 1.0             | 4.7               | 41.7               |
| WBL      | 23.7             | 23.7            | 12.3           | 12.3           | 21.8          | 55.1            | 49.9            | 13.1              | 12.7               |
| WBT      | 17.0             | 17.0            | 18.2           | 18.7           | 68.6          | 79.7            | 77.6            | 79.0              | 78.7               |
| WBR      | 9.0              | 11.0            | 1.3            | 2.1            | 68.6          | 0.8             | 0.7             | 0.8               | 0.8                |
| Movement |                  |                 |                | Queue Len      | gth divided   | by Spacing      | 3               |                   |                    |
| EBTS     | 3.0%             | 3.8%            | 51.7%          | 71.5%          | 0.0%          | 3.3%            | 1.4%            | 3.8%              | 4.6%               |
| WBTS     | 2.5%             | 3.4%            | 5.4%           | 11.5%          | 0.0%          | 0.5%            | 0.2%            | 0.1%              | 0.1%               |
| Movement |                  |                 | Maxi           | mum Queu       | e Length d    | ivided by S     | torage          |                   |                    |
| EBL      | n/a              | n/a             | n/a            | n/a            | n/a           | 317%            | 116%            | 70%               | 50%                |
| WBL      | n/a              | n/a             | n/a            | n/a            | n/a           | 213%            | 88%             | 38%               | 26%                |

|            |       |                  | Table           | F1: v/c = 0    | ).7; OD Pat    | ttern: Sup  | erstore         |                 |                   |                    |
|------------|-------|------------------|-----------------|----------------|----------------|-------------|-----------------|-----------------|-------------------|--------------------|
|            |       |                  |                 | Simula         | ited Delay     | (sec) for e | each Spacii     | ng Level        |                   |                    |
| Movem      | ient  | -1200<br>(3Lead) | -900<br>(3Lead) | -600<br>(3Lag) | -300<br>(3Lag) | 0<br>(4C)   | +300<br>(T3Lag) | +600<br>(T3Lag) | +900<br>(4CSplit) | +1200<br>(4CSplit) |
| Vehicle    |       |                  |                 |                |                |             | -               |                 |                   |                    |
| Main to    | EBT   | 21.9             | 20.7            | 31.4           | 28.9           | 26.9        | 27.0            | 24.8            | 37.7              | 39.8               |
| Main       | WBT   | 24.1             | 23.8            | 26.8           | 25.1           | 33.2        | 27.3            | 26.7            | 29.7              | 29.8               |
| Minor to   | NBT   | 38.8             | 38.7            | 30.5           | 30.9           | 30.0        | 56.8            | 64.9            | 49.0              | 48.2               |
| Minor      | SBT   | 43.1             | 44.2            | 44.1           | 45.2           | 29.4        | 44.6            | 46.4            | 35.6              | 35.9               |
|            | EBL   | 46.2             | 46.2            | 44.4           | 44.2           | 57.2        | 62.1            | 67.3            | 101.2             | 96.6               |
| Main to    | EBR   | 16.7             | 17.0            | 19.4           | 18.0           | 20.6        | 5.8             | 5.7             | 6.9               | 7.3                |
| Minor      | WBL   | 41.4             | 41.4            | 28.1           | 28.1           | 46.7        | 55.4            | 49.4            | 45.9              | 42.7               |
|            | WBR   | 18.1             | 18.6            | 22.3           | 20.7           | 25.4        | 9.6             | 9.4             | 9.9               | 9.9                |
|            | NBL   | 46.7             | 50.9            | 39.4           | 43.4           | 44.4        | 22.3            | 22.3            | 38.0              | 37.9               |
| Minor to   | NBR   | 4.8              | 4.9             | 4.6            | 4.6            | 7.8         | 17.0            | 16.5            | 15.4              | 16.6               |
| Main       | SBL   | 50.6             | 54.2            | 51.7           | 56.3           | 90.6        | 26.8            | 26.8            | 47.2              | 47.3               |
|            | SBR   | 4.5              | 4.5             | 4.2            | 4.4            | 17.3        | 15.0            | 15.1            | 12.4              | 12.4               |
| Bicycle    |       |                  |                 |                | •              |             | •               |                 |                   |                    |
| Main to    | EBT   | 13.0             | 13.3            | 20.0           | 19.6           | 20.1        | 19.7            | 18.8            | 26.2              | 25.0               |
| Main       | WBT   | 18.1             | 18.5            | 18.5           | 18.8           | 25.9        | 20.9            | 20.7            | 23.8              | 23.4               |
| Minor to   | NBT   | 17.9             | 18.8            | 18.8           | 20.0           | 25.2        | 17.4            | 18.8            | 32.1              | 31.5               |
| Minor      | SBT   | 17.5             | 17.9            | 18.7           | 19.6           | 20.6        | 17.5            | 17.3            | 32.4              | 33.9               |
|            | EBL   | 17.9             | 17.9            | 18.4           | 18.5           | 64.0        | 45.4            | 35.4            | 35.9              | 33.4               |
| Main to    | EBR   | 0.5              | 0.6             | 0.7            | 0.9            | 1.7         | 0.5             | 0.5             | 1.8               | 1.7                |
| Minor      | WBL   | 19.2             | 19.1            | 18.8           | 18.9           | 59.4        | 50.5            | 40.8            | 54.8              | 46.9               |
|            | WBR   | 0.5              | 0.7             | 0.7            | 0.9            | 4.2         | 0.8             | 0.8             | 1.8               | 1.7                |
|            | NBL   | 23.2             | 28.7            | 23.4           | 30.4           | 63.3        | 17.6            | 17.5            | 32.0              | 32.1               |
| Minor to   | NBR   | 0.6              | 0.6             | 0.7            | 0.7            | 4.1         | 1.7             | 1.2             | 2.5               | 2.1                |
| Main       | SBL   | 21.8             | 24.6            | 23.9           | 30.0           | 56.4        | 18.0            | 18.1            | 30.1              | 30.1               |
|            | SBR   | 0.8              | 0.8             | 0.7            | 0.7            | 1.1         | 0.2             | 0.2             | 1.0               | 0.9                |
| Pedestrian |       |                  |                 |                |                |             |                 |                 |                   |                    |
| Main St.   | Cross | 93.1             | 93.1            | 93.8           | 93.8           | 93.3        | 93.6            | 93.9            | 131.1             | 131.1              |
| Minor St.  | Cross | 84.5             | 84.5            | 84.3           | 84.3           | 91.7        | 82.4            | 82.5            | 111.8             | 111.9              |
| Diagonal   | Cross | 105.1            | 105.2           | 106.0          | 106.0          | 153.3       | 106.4           | 106.7           | 151.9             | 151.9              |

## Appendix F. Delay Simulation Results

| <table-container>(it) (it) (it) (it) (it) (it) (it) (it)</table-container>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |       |       | Table F2: | v/c = 0.7; | OD Patteri | n: Hybrid ( | Gas Statior | 1        |       |                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|-------|-----------|------------|------------|-------------|-------------|----------|-------|--------------------|
| Table<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Base<br>Bas                                                                                                                                                                                                                  |            |       |       |           | Simula     | ted Delay  | (sec) for e | each Spacir | ng Level |       |                    |
| Main of<br>MainEBT24.223.125.122.931.324.323.849.054.0Minor to<br>Minor<br>MinorNBT31.922.925.623.730.026.726.529.429.7Minor to<br>Minor<br>MinorNBT31.931.322.822.522.844.747.437.937.9Minor to<br>MinorBBT32.532.923.923.923.240.842.827.027.4Main to<br>MinorBER47.317.121.019.826.76.66.612.412.5Minor to<br>MinorBBR17.317.121.019.826.76.606.6012.412.5Minor to<br>MinorBER17.317.121.019.826.76.606.606.606.606.60Minor to<br>MinorMBR45.317.121.019.826.76.606.606.606.606.606.606.606.606.606.606.606.606.606.606.606.606.606.606.606.606.606.606.606.606.606.606.606.606.606.606.606.606.606.606.606.606.606.606.606.606.616.616.535.86.535.96.0024.824.924.024.024.024.024.024.024.024.024.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Movem      | ient  |       |           |            |            | -           |             |          |       | +1200<br>(4CSplit) |
| Main<br>Minor to<br>Minor to<br>Minor to<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Vehicle    |       |       |           |            |            |             |             |          |       |                    |
| Ninor to<br>MinorNBT31.931.322.822.522.844.747.437.937.9MinorSBT32.532.923.923.923.224.844.747.437.937.9MinorEBR42.943.058.959.141.343.039.894.688.8Main to<br>MinorEBR17.317.121.019.826.76.66.612.412.5MinorMBL40.040.057.857.247.553.348.439.136.6MBR15.315.219.318.323.56.06.06.06.0MBR64.463.35.86.38.218.218.821.221.0Minor MainSBR6.46.35.86.38.218.218.821.221.0Minor MainEBT14.447.835.539.060.024.824.934.434.4Minor MainMBR6.46.35.86.38.218.218.821.221.0Minor MainEBT14.414.713.213.919.517.617.526.425.4Minor MainEBT14.414.713.213.919.517.617.526.425.4Minor MainEBT14.414.713.213.420.517.518.125.926.2Minor MainBB21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Main to    | EBT   | 24.2  | 23.1      | 25.1       | 22.9       | 31.3        | 24.3        | 23.8     | 49.0  | 54.0               |
| MinorSBT32.532.923.923.923.240.842.827.027.4MinorEBR42.943.058.959.141.343.039.894.688.8MinorMinor40.040.057.857.247.553.348.439.136.6WBR15.315.219.318.323.56.06.06.06.0Minor toMBR6.46.35.86.382.218.218.821.221.0Minor toMBR6.46.35.86.38.218.218.821.221.0Minor toMBR6.46.35.86.38.218.218.821.221.0Minor toMBR6.46.35.86.38.218.218.821.221.0Minor toMBR6.46.35.86.38.218.218.821.221.0Minor toMBR6.46.35.86.38.218.218.434.4Minor toMBT16.116.415.916.222.418.313.311.011.0Minor toMBT16.116.415.916.222.419.219.321.026.4Minor toMBT17.718.214.014.520.517.518.125.926.4Minor toMBT17.718.214.014.519.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Main       | WBT   | 23.7  | 22.9      | 25.6       | 23.7       | 30.0        | 26.7        | 26.5     | 29.4  | 29.7               |
| Name<br>Main to<br>MinorEBR<br>EBR42.943.058.959.141.343.039.894.688.8Main to<br>MinorWBL40.040.057.857.247.553.348.439.136.6WB15.315.219.318.323.56.06.06.06.0WB15.315.219.318.323.56.06.06.06.0Minor to<br>MainSBL44.147.835.539.060.024.824.934.434.4Minor to<br>MainEBT14.447.835.539.060.024.824.934.434.4Main to<br>MainEBT14.414.713.213.919.517.617.526.425.4Main to<br>MainEBT14.414.713.213.919.517.617.526.425.4Main to<br>MainEBT14.414.713.213.919.517.617.526.425.4Minor to<br>MinorEBT14.414.713.213.919.517.617.526.425.4Minor to<br>MinorEBT14.414.713.213.919.517.617.526.425.4Minor to<br>MinorEBT14.414.713.213.919.517.617.526.425.4Minor to<br>MinorEBT14.116.116.415.916.227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Minor to   | NBT   | 31.9  | 31.3      | 22.8       | 22.5       | 22.8        | 44.7        | 47.4     | 37.9  | 37.9               |
| Main of<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor <b< th=""><th>Minor</th><th>SBT</th><th>32.5</th><th>32.9</th><th>23.9</th><th>23.9</th><th>23.2</th><th>40.8</th><th>42.8</th><th>27.0</th><th>27.4</th></b<>                              | Minor      | SBT   | 32.5  | 32.9      | 23.9       | 23.9       | 23.2        | 40.8        | 42.8     | 27.0  | 27.4               |
| Minor<br>Minorto<br>MainWBL40.040.057.857.247.553.348.439.136.6WBR15.315.219.318.323.56.06.06.06.0Minor to<br>MainSBL45.549.533.937.839.122.922.934.534.4Minor to<br>Main5BL44.147.835.539.060.024.824.934.434.4SBL44.147.835.539.060.024.824.934.434.4Bicycle5BL44.147.835.539.060.024.824.934.434.4Bicycle5BL44.147.835.539.060.024.824.934.434.4Bicycle5BL44.147.835.539.060.024.824.934.434.4Bicycle5BL44.147.835.539.060.024.824.934.434.4Bicycle5BL44.147.813.213.913.513.313.313.424.934.424.924.924.924.924.924.924.924.924.924.924.924.924.924.924.924.924.924.924.924.924.924.924.924.924.924.924.924.924.924.924.924.924.924.924.924.924.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | EBL   | 42.9  | 43.0      | 58.9       | 59.1       | 41.3        | 43.0        | 39.8     | 94.6  | 88.8               |
| NoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Main to    | EBR   | 17.3  | 17.1      | 21.0       | 19.8       | 26.7        | 6.6         | 6.6      | 12.4  | 12.5               |
| NBL<br>Minoro<br>MainNBL<br>0.6.449.533.937.839.122.922.934.534.4Minoro<br>MainSBL44.16.35.86.38.218.218.821.221.0SBL<br>Maino44.147.835.539.060.024.824.934.434.4SBR<br>Maino4.54.54.14.48.013.313.311.011.0Bicycle4.513.213.919.517.617.526.425.4Mainto<br>Maino<br>Minor<br>Minor<br>Minor<br>MinoEBT<br>14.414.713.213.919.517.617.526.425.4Minor Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor16.116.414.914.520.517.518.125.926.2Minor Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor<br>Minor <br< th=""><th>Minor</th><th>WBL</th><th>40.0</th><th>40.0</th><th>57.8</th><th>57.2</th><th>47.5</th><th>53.3</th><th>48.4</th><th>39.1</th><th>36.6</th></br<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Minor      | WBL   | 40.0  | 40.0      | 57.8       | 57.2       | 47.5        | 53.3        | 48.4     | 39.1  | 36.6               |
| Minor to<br>MainNBR6.46.35.86.38.218.218.821.221.0SBL44.147.835.539.060.024.824.934.434.4BBR4.54.54.14.48.013.313.311.011.0BicycleMain to<br>Main to<br>Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | WBR   | 15.3  | 15.2      | 19.3       | 18.3       | 23.5        | 6.0         | 6.0      | 6.0   | 6.0                |
| Main<br>Main<br>Main<br>Main to<br>Main to <br< th=""><th></th><th>NBL</th><th>45.5</th><th>49.5</th><th>33.9</th><th>37.8</th><th>39.1</th><th>22.9</th><th>22.9</th><th>34.5</th><th>34.4</th></br<> |            | NBL   | 45.5  | 49.5      | 33.9       | 37.8       | 39.1        | 22.9        | 22.9     | 34.5  | 34.4               |
| ore<br>SBR4.54.6300010001000100010001000BicycleMain to<br>MainEBT14.414.713.213.919.517.617.526.425.4Main to<br>MainEBT16.116.415.916.222.419.219.321.020.8Minot to<br>MinorBBT17.718.214.014.520.517.518.125.926.2Minot to<br>MinorBBT17.618.014.615.219.717.817.728.728.2Minot to<br>MinorBBT17.618.014.615.219.717.817.728.728.2Main to<br>MinorBBT17.618.014.615.219.717.817.728.728.2Main to<br>MinorBBR0.50.60.40.71.10.40.41.61.5Main to<br>MinorBBR0.40.40.60.72.90.60.71.00.9Minor to<br>Minor to0.40.40.60.72.90.60.71.00.9Minor to<br>Minor to0.40.40.60.72.90.60.71.00.9Minor to<br>Minor to0.40.40.60.72.90.60.71.00.9Minor to<br>Minor to0.40.40.40.40.41.11.51.9Mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Minor to   | NBR   | 6.4   | 6.3       | 5.8        | 6.3        | 8.2         | 18.2        | 18.8     | 21.2  | 21.0               |
| BicycleEBT14.414.713.213.919.517.617.526.425.4Main to<br>MainEBT16.116.415.916.222.419.219.321.020.8Minor to<br>MinorNBT17.718.214.014.520.517.518.125.926.2Minor to<br>MinorBEL18.118.014.615.219.717.817.728.728.2Minor MinorBEL18.118.113.313.454.343.034.032.833.5Main to<br>MinorBER0.50.60.40.71.10.40.41.61.5Main to<br>MinorBER0.50.60.40.71.10.40.41.61.5Main to<br>MinorBER0.50.60.40.71.10.40.41.61.5Minor to<br>MinorBER0.40.40.60.72.90.60.71.00.9Minor to<br>MinorNBL21.826.719.726.155.218.018.228.628.628.6Minor to<br>MinorSBL0.70.70.40.425.551.518.018.327.327.3Minor to<br>MainSBL22.225.319.125.551.518.018.327.327.3SBR0.70.70.50.41.00.20.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Main       | SBL   | 44.1  | 47.8      | 35.5       | 39.0       | 60.0        | 24.8        | 24.9     | 34.4  | 34.4               |
| Main to<br>Main         EBT         14.4         14.7         13.2         13.9         19.5         17.6         17.5         26.4         25.4           Main         WBT         16.1         16.4         15.9         16.2         22.4         19.2         19.3         21.0         20.8           Minor to<br>Minor         NBT         17.7         18.2         14.0         14.5         20.5         17.5         18.1         25.9         26.2           Minor         SBT         17.6         18.0         14.6         15.2         19.7         17.8         17.7         28.7         28.2           Main to<br>Minor         EBL         18.1         18.1         13.3         13.4         54.3         43.0         34.0         32.8         33.5           Main to<br>Minor         WBL         19.2         19.2         13.9         13.8         54.8         48.1         39.4         50.9         42.9           Main to<br>Minor to         MBL         0.4         0.4         0.6         0.7         2.9         0.6         0.7         1.0         0.9           Minor to<br>Main St         NBL         21.8         26.7         19.7         26.1         55.2         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | SBR   | 4.5   | 4.5       | 4.1        | 4.4        | 8.0         | 13.3        | 13.3     | 11.0  | 11.0               |
| Main<br>Main<br>Minor to<br>Minor to<br>Minor<br>Minor<br>Minor<br>MinorWBT16.116.415.916.222.419.219.321.020.8Minor to<br>Minor<br>MinorNBT17.718.214.014.520.517.518.125.926.2Main to<br>MinorSBT17.618.014.615.219.717.817.728.728.2Main to<br>MinorEBL18.118.113.313.454.343.034.032.833.5Main to<br>MinorMBL19.219.213.913.854.848.139.450.942.9Main to<br>Minor0.40.40.40.40.41.61.5Minor to<br>MainSBL21.826.719.726.155.218.018.228.628.6Minor to<br>MainSBL22.225.319.125.551.518.018.327.327.3Minor to<br>MainSBL22.225.319.125.551.518.018.327.327.3Minor to<br>Main St.ross93.293.280.980.982.793.193.1118.5118.5Minor to<br>Main St.ross93.293.280.980.982.793.193.1118.5118.5Minor to<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bicycle    |       |       | <u>.</u>  |            | <u>.</u>   | <u>.</u>    | <u>.</u>    | -        |       | <u>.</u>           |
| Minor<br>Minor<br>MinorNBT17.718.214.014.520.517.618.125.926.2Minor<br>MinorSBT17.618.014.615.219.717.817.728.728.2Main to<br>MinorEBR0.50.60.40.71.10.40.434.032.833.5Main to<br>MinorEBR0.50.60.40.71.10.40.41.61.5Main to<br>MinorBBR0.50.60.40.71.10.40.41.61.5Main to<br>MinorBBR0.50.60.40.71.10.40.41.61.5Main to<br>MainBBR0.50.60.40.71.10.40.41.61.5Minor to<br>MainBBR0.40.40.60.72.90.60.71.000.9Minor to<br>MainSBL21.826.719.726.155.218.018.228.628.6Minor to<br>MainSBL0.70.70.40.42.814.41.11.51.9Minor to<br>MainSBL0.70.70.40.42.818.018.327.327.3Minor to<br>Main to<br>Minor to93.293.228.080.982.793.1118.5118.5Minor to<br>Main to<br>Minor to93.293.280.980.982.793.1 <th>Main to</th> <th>EBT</th> <th>14.4</th> <th>14.7</th> <th>13.2</th> <th>13.9</th> <th>19.5</th> <th>17.6</th> <th>17.5</th> <th>26.4</th> <th>25.4</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Main to    | EBT   | 14.4  | 14.7      | 13.2       | 13.9       | 19.5        | 17.6        | 17.5     | 26.4  | 25.4               |
| MinorSBT17.618.014.615.219.717.817.728.728.2Main to<br>MinorEBL18.118.113.313.454.343.034.032.833.5Main to<br>MinorEBR0.50.60.40.71.10.40.41.61.5Main to<br>Main19.219.213.913.854.848.139.450.942.9Main to<br>Main0.40.40.60.72.90.60.71.00.9Main St.rossSBL21.826.719.726.155.218.018.228.628.6Main St.ross93.225.319.125.551.518.018.327.327.3Main St.ross93.293.280.980.982.793.193.1118.5118.5Minor St.ross84.884.772.572.584.182.882.8101.9102.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Main       | WBT   | 16.1  | 16.4      | 15.9       | 16.2       | 22.4        | 19.2        | 19.3     | 21.0  | 20.8               |
| Main to<br>MinorEBL18.118.113.313.454.343.034.032.833.5Main to<br>MinorEBR0.50.60.40.71.10.40.41.61.5WBL19.219.213.913.854.848.139.450.942.9WBR0.40.40.60.72.90.60.71.00.9Minor to<br>MainNBL21.826.719.726.155.218.018.228.628.6Minor to<br>MainSBL0.70.70.40.42.81.41.11.51.9Main St. ross93.293.280.980.982.793.193.1118.5118.5Minor St. ross84.884.772.572.584.182.882.8101.9102.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Minor to   | NBT   | 17.7  | 18.2      | 14.0       | 14.5       | 20.5        | 17.5        | 18.1     | 25.9  | 26.2               |
| Main to<br>MinorEBR $0.5$ $0.6$ $0.4$ $0.7$ $1.1$ $0.4$ $0.4$ $1.6$ $1.5$ WBL $19.2$ $19.2$ $13.9$ $13.8$ $54.8$ $48.1$ $39.4$ $50.9$ $42.9$ WBR $0.4$ $0.4$ $0.6$ $0.7$ $2.9$ $0.6$ $0.7$ $1.0$ $0.9$ Minor to<br>MainNBL $21.8$ $26.7$ $19.7$ $26.1$ $55.2$ $18.0$ $18.2$ $28.6$ $28.6$ Minor to<br>Main $0.7$ $0.7$ $0.4$ $0.4$ $2.8$ $1.4$ $1.1$ $1.5$ $1.9$ Main St. $5BR$ $0.7$ $0.7$ $0.5$ $0.4$ $1.0$ $0.2$ $0.2$ $0.2$ $0.7$ $0.7$ $0.7$ Main St. $ross$ $84.8$ $84.7$ $72.5$ $72.5$ $84.1$ $82.8$ $82.8$ $82.8$ $82.8$ $101.9$ $102.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Minor      | SBT   | 17.6  | 18.0      | 14.6       | 15.2       | 19.7        | 17.8        | 17.7     | 28.7  | 28.2               |
| Minor<br>MinorWBL19.219.213.913.854.848.139.450.942.9WBR0.40.40.60.72.90.60.71.00.9Minor to<br>MainNBL21.826.719.726.155.218.018.228.628.6Minor to<br>MainSBL22.225.319.726.155.218.018.327.327.3SBL22.225.319.125.551.518.018.327.327.3Pedestrian0.70.70.50.41.00.20.20.70.70.6Minor St. Torss93.293.280.980.982.793.193.1118.5118.5Minor St. Torss84.884.772.572.584.182.882.8101.9102.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | EBL   | 18.1  | 18.1      | 13.3       | 13.4       | 54.3        | 43.0        | 34.0     | 32.8  | 33.5               |
| Minor to<br>Main         NBL         21.8         26.7         19.7         26.1         57.6         44.1         55.4         56.5         44.1           Minor to<br>Main         NBL         21.8         26.7         19.7         26.1         55.2         18.0         18.2         28.6         28.6           Minor to<br>Main         NBR         0.7         0.7         0.4         0.4         2.8         1.4         1.1         1.5         1.9           Minor to<br>Main         NBR         0.7         0.7         0.4         0.4         2.8         1.4         1.1         1.5         1.9           Main         SBL         22.2         25.3         19.1         25.5         51.5         18.0         18.3         27.3         27.3           SBR         0.7         0.7         0.5         0.4         1.0         0.2         0.2         0.7         0.6           Pedestriar         93.2         93.2         80.9         80.9         82.7         93.1         93.1         118.5         118.5           Minor St. Cross         84.8         84.7         72.5         72.5         84.1         82.8         82.8         101.9         102.0 <th>Main to</th> <th>EBR</th> <th>0.5</th> <th>0.6</th> <th>0.4</th> <th>0.7</th> <th>1.1</th> <th>0.4</th> <th>0.4</th> <th>1.6</th> <th>1.5</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Main to    | EBR   | 0.5   | 0.6       | 0.4        | 0.7        | 1.1         | 0.4         | 0.4      | 1.6   | 1.5                |
| NBL21.826.719.726.155.218.018.228.628.6Minor to<br>Main0.70.70.40.42.81.41.11.51.9SBL22.225.319.125.551.518.018.327.327.3SBR0.70.70.50.41.00.20.20.70.6PedestrianMain St. Toss93.293.280.980.982.793.193.1118.5118.5Minor St. Toss84.884.772.572.584.182.882.8101.9102.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Minor      | WBL   | 19.2  | 19.2      | 13.9       | 13.8       | 54.8        | 48.1        | 39.4     | 50.9  | 42.9               |
| Minor to<br>Main         NBR         0.7         0.7         0.4         0.4         2.8         1.4         1.1         1.5         1.9           Main         SBL         22.2         25.3         19.1         25.5         51.5         18.0         18.3         27.3         27.3           SBR         0.7         0.7         0.5         0.4         1.0         0.2         0.2         0.7         0.5           Pedestrian         Main St. ross         93.2         93.2         80.9         80.9         82.7         93.1         93.18.5         118.5           Minor St. ross         84.8         84.7         72.5         72.5         84.1         82.8         82.8         101.9         102.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | WBR   | 0.4   | 0.4       | 0.6        | 0.7        | 2.9         | 0.6         | 0.7      | 1.0   | 0.9                |
| Main         SBL         22.2         25.3         19.1         25.5         51.5         18.0         18.3         27.3         27.3           SBR         0.7         0.7         0.5         0.4         1.0         0.2         0.2         0.7         0.6           Pedestrian         Sin St. Cross         93.2         93.2         80.9         80.9         82.7         93.1         93.1         118.5         118.5           Minor St. Cross         84.8         84.7         72.5         72.5         84.1         82.8         82.8         101.9         102.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | NBL   | 21.8  | 26.7      | 19.7       | 26.1       | 55.2        | 18.0        | 18.2     | 28.6  | 28.6               |
| SBR         0.7         0.7         0.5         0.4         1.0         0.2         0.2         0.7         0.6           Pedestrian           Main St. Cross         93.2         93.2         80.9         80.9         82.7         93.1         93.1         118.5         118.5           Minor St. Cross         84.8         84.7         72.5         72.5         84.1         82.8         82.8         101.9         102.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Minor to   | NBR   | 0.7   | 0.7       | 0.4        | 0.4        | 2.8         | 1.4         | 1.1      | 1.5   | 1.9                |
| Pedestrian         93.2         93.2         80.9         80.9         82.7         93.1         93.1         118.5         118.5           Minor St. Cross         84.8         84.7         72.5         72.5         84.1         82.8         82.8         101.9         102.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Main       | SBL   | 22.2  | 25.3      | 19.1       | 25.5       | 51.5        | 18.0        | 18.3     | 27.3  | 27.3               |
| Main St. Cross         93.2         93.2         80.9         80.9         82.7         93.1         93.1         118.5           Minor St. Cross         84.8         84.7         72.5         72.5         84.1         82.8         82.8         101.9         102.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | SBR   | 0.7   | 0.7       | 0.5        | 0.4        | 1.0         | 0.2         | 0.2      | 0.7   | 0.6                |
| Minor St. Cross         84.8         84.7         72.5         72.5         84.1         82.8         82.8         101.9         102.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pedestrian |       |       |           |            | -          |             | -           | -        |       |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Main St.   | Cross | 93.2  | 93.2      | 80.9       | 80.9       | 82.7        | 93.1        | 93.1     | 118.5 | 118.5              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Minor St.  | Cross | 84.8  | 84.7      | 72.5       | 72.5       | 84.1        | 82.8        | 82.8     | 101.9 | 102.0              |
| Diagonal Cross         105.5         105.5         90.8         90.8         131.7         106.5         106.5         136.5         136.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Diagonal   | Cross | 105.5 | 105.5     | 90.8       | 90.8       | 131.7       | 106.5       | 106.5    | 136.5 | 136.6              |

|            |       |                    | Tabl              | e F3: v/c =    | = 0.7; OD P    | attern: Re  | esAM            |                 |                   |                    |
|------------|-------|--------------------|-------------------|----------------|----------------|-------------|-----------------|-----------------|-------------------|--------------------|
|            |       |                    |                   | Simula         | ted Delay      | (sec) for e | each Spacir     | ng Level        |                   |                    |
| Movem      | ient  | -1200<br>(LRSplit) | -900<br>(LRSplit) | -600<br>(3Lag) | -300<br>(3Lag) | 0<br>(4C)   | +300<br>(T3Lag) | +600<br>(T3Lag) | +900<br>(4CSplit) | +1200<br>(4CSplit) |
| Vehicle    |       |                    |                   |                |                |             |                 |                 |                   |                    |
| Main to    | EBT   | 19.8               | 21.8              | 23.9           | 22.3           | 34.7        | 23.9            | 24.1            | 40.0              | 43.1               |
| Main       | WBT   | 16.3               | 16.3              | 23.9           | 23.0           | 22.9        | 26.9            | 25.7            | 35.6              | 36.2               |
| Minor to   | NBT   | 52.7               | 52.5              | 37.1           | 37.6           | 20.6        | 34.2            | 35.2            | 32.6              | 32.8               |
| Minor      | SBT   | 49.2               | 48.2              | 32.2           | 32.4           | 28.4        | 52.5            | 52.1            | 30.7              | 32.5               |
|            | EBL   | 60.1               | 60.1              | 33.1           | 33.3           | 49.0        | 44.9            | 40.4            | 84.3              | 78.2               |
| Main to    | EBR   | 15.6               | 15.9              | 16.6           | 16.3           | 29.4        | 7.2             | 7.2             | 8.2               | 8.1                |
| Minor      | WBL   | 48.1               | 48.2              | 53.0           | 53.0           | 63.5        | 62.2            | 57.8            | 45.1              | 43.1               |
|            | WBR   | 9.6                | 9.5               | 14.0           | 14.3           | 17.7        | 6.1             | 5.4             | 8.5               | 8.7                |
|            | NBL   | 53.8               | 53.2              | 48.8           | 53.5           | 43.5        | 35.0            | 35.0            | 36.8              | 36.8               |
| Minor to   | NBR   | 4.4                | 4.4               | 4.3            | 4.6            | 6.4         | 12.2            | 12.4            | 15.9              | 16.9               |
| Main       | SBL   | 59.4               | 52.1              | 46.5           | 50.2           | 45.8        | 31.0            | 30.8            | 33.1              | 33.1               |
|            | SBR   | 5.9                | 5.7               | 7.1            | 7.1            | 13.1        | 17.4            | 15.8            | 14.1              | 14.5               |
| Bicycle    |       |                    |                   |                | <u>.</u>       | <u>-</u>    | <u>.</u>        | -               |                   | -                  |
| Main to    | EBT   | 11.6               | 11.1              | 15.6           | 15.4           | 23.9        | 22.4            | 21.7            | 27.1              | 26.3               |
| Main       | WBT   | 6.0                | 6.4               | 12.3           | 11.9           | 15.4        | 14.5            | 14.6            | 21.0              | 20.8               |
| Minor to   | NBT   | 33.6               | 33.6              | 21.7           | 22.5           | 18.1        | 27.7            | 27.7            | 25.9              | 26.2               |
| Minor      | SBT   | 35.3               | 36.0              | 23.2           | 24.2           | 24.5        | 27.0            | 27.3            | 28.7              | 28.3               |
|            | EBL   | 35.4               | 35.4              | 22.3           | 22.2           | 53.9        | 59.7            | 50.7            | 33.1              | 33.8               |
| Main to    | EBR   | 2.0                | 2.3               | 0.7            | 0.9            | 2.2         | 0.7             | 0.7             | 1.6               | 1.6                |
| Minor      | WBL   | 38.2               | 38.1              | 23.1           | 23.1           | 64.6        | 55.3            | 46.6            | 51.2              | 42.9               |
|            | WBR   | 0.3                | 0.2               | 0.8            | 1.0            | 2.4         | 0.7             | 0.7             | 1.0               | 0.9                |
|            | NBL   | 36.2               | 37.4              | 27.2           | 34.0           | 49.4        | 26.4            | 26.5            | 28.5              | 28.4               |
| Minor to   | NBR   | 3.0                | 3.0               | 1.4            | 1.4            | 2.5         | 4.8             | 3.7             | 1.6               | 1.8                |
| Main       | SBL   | 48.4               | 56.2              | 28.6           | 35.2           | 61.6        | 27.1            | 27.5            | 27.3              | 27.2               |
|            | SBR   | 3.2                | 3.2               | 1.1            | 1.2            | 2.1         | 0.9             | 0.9             | 0.7               | 0.6                |
| Pedestrian |       | -                  |                   |                |                |             |                 | -               |                   |                    |
| Main St.   | Cross | 142.9              | 143.0             | 106.1          | 106.1          | 93.1        | 119.8           | 119.3           | 118.5             | 118.5              |
| Minor St.  | Cross | 123.0              | 123.0             | 91.9           | 92.0           | 91.9        | 103.2           | 103.5           | 101.6             | 101.8              |
| Diagonal   | Cross | 164.1              | 164.2             | 120.5          | 120.5          | 153.8       | 137.1           | 137.2           | 136.7             | 136.7              |

|            |       |                  | Tab             | le F4: v/c =   | = 0.7; OD P    | attern: Re  | esPM            |                 |                   |                    |
|------------|-------|------------------|-----------------|----------------|----------------|-------------|-----------------|-----------------|-------------------|--------------------|
|            |       |                  |                 | Simula         | ted Delay      | (sec) for e | each Spacii     | ng Level        |                   |                    |
| Movem      | nent  | -1200<br>(3Lead) | -900<br>(3Lead) | -600<br>(3Lag) | -300<br>(3Lag) | 0<br>(4C)   | +300<br>(T3Lag) | +600<br>(T3Lag) | +900<br>(4CSplit) | +1200<br>(4CSplit) |
| Vehicle    |       |                  |                 |                |                |             |                 |                 |                   |                    |
| Main to    | EBT   | 24.4             | 22.2            | 22.5           | 20.8           | 37.7        | 21.2            | 21.2            | 47.6              | 52.5               |
| Main       | WBT   | 21.3             | 20.1            | 23.7           | 22.8           | 24.4        | 36.4            | 35.4            | 30.3              | 30.6               |
| Minor to   | NBT   | 30.0             | 30.6            | 34.6           | 34.7           | 20.4        | 37.7            | 41.6            | 35.1              | 34.9               |
| Minor      | SBT   | 29.8             | 29.3            | 31.5           | 31.7           | 23.2        | 51.5            | 52.5            | 25.8              | 26.7               |
|            | EBL   | 40.2             | 40.3            | 35.8           | 35.8           | 40.8        | 31.2            | 29.0            | 92.0              | 86.0               |
| Main to    | EBR   | 18.4             | 17.9            | 17.8           | 17.3           | 35.7        | 6.7             | 6.7             | 13.0              | 12.4               |
| Minor      | WBL   | 47.1             | 47.1            | 48.6           | 48.6           | 50.7        | 76.4            | 71.2            | 40.5              | 37.9               |
|            | WBR   | 14.5             | 14.5            | 14.0           | 13.9           | 19.1        | 4.9             | 4.9             | 4.3               | 4.4                |
|            | NBL   | 40.1             | 44.0            | 45.6           | 49.7           | 39.1        | 27.8            | 27.8            | 34.9              | 34.9               |
| Minor to   | NBR   | 6.2              | 6.3             | 6.3            | 6.9            | 8.3         | 17.3            | 18.2            | 22.0              | 21.8               |
| Main       | SBL   | 41.2             | 44.8            | 44.6           | 47.9           | 42.7        | 25.7            | 25.5            | 29.2              | 29.2               |
|            | SBR   | 3.3              | 3.4             | 3.3            | 3.6            | 6.9         | 11.9            | 12.0            | 10.5              | 10.4               |
| Bicycle    | -     |                  |                 |                | <u>.</u>       | <u>-</u>    | <u>.</u>        | -               |                   | -                  |
| Main to    | EBT   | 13.6             | 14.9            | 13.7           | 13.6           | 19.7        | 17.0            | 16.4            | 26.7              | 25.7               |
| Main       | WBT   | 8.3              | 7.6             | 16.4           | 15.5           | 18.5        | 25.5            | 25.1            | 21.3              | 21.1               |
| Minor to   | NBT   | 57.8             | 58.8            | 22.0           | 23.1           | 16.4        | 21.9            | 22.0            | 25.9              | 26.3               |
| Minor      | SBT   | 61.2             | 62.9            | 22.7           | 23.7           | 20.1        | 22.7            | 23.5            | 28.6              | 28.3               |
|            | EBL   | 63.5             | 63.5            | 22.5           | 22.5           | 47.9        | 47.8            | 39.0            | 32.8              | 33.4               |
| Main to    | EBR   | 6.4              | 7.0             | 0.8            | 0.9            | 1.2         | 0.6             | 0.6             | 1.6               | 1.6                |
| Minor      | WBL   | 61.7             | 62.0            | 22.7           | 22.7           | 55.1        | 64.9            | 56.0            | 51.4              | 43.1               |
|            | WBR   | 0.9              | 0.8             | 0.9            | 1.2            | 2.2         | 2.0             | 1.9             | 1.0               | 1.0                |
|            | NBL   | 62.3             | 67.4            | 28.4           | 35.4           | 49.5        | 22.8            | 22.8            | 28.6              | 28.5               |
| Minor to   | NBR   | 12.3             | 12.3            | 1.2            | 1.2            | 1.8         | 2.8             | 2.0             | 1.5               | 1.7                |
| Main       | SBL   | 65.6             | 71.3            | 28.2           | 35.2           | 51.5        | 22.9            | 23.0            | 27.3              | 27.3               |
|            | SBR   | 12.5             | 12.5            | 1.2            | 1.2            | 1.1         | 0.4             | 0.4             | 0.7               | 0.6                |
| Pedestrian |       |                  |                 |                |                |             |                 |                 |                   |                    |
| Main St.   | Cross | 216.7            | 216.7           | 106.2          | 106.2          | 83.7        | 106.7           | 107.0           | 118.5             | 118.5              |
| Minor St.  | Cross | 183.1            | 183.1           | 92.5           | 92.5           | 83.5        | 93.1            | 92.8            | 101.6             | 101.2              |
| Diagonal   | Cross | 256.1            | 256.2           | 120.6          | 120.6          | 132.2       | 122.1           | 122.1           | 136.5             | 136.4              |

|            |       |                  | Tabl            | e F5: v/c =    | : 0.7; OD P    | attern: Re  | align           |                 |                   |                    |
|------------|-------|------------------|-----------------|----------------|----------------|-------------|-----------------|-----------------|-------------------|--------------------|
|            |       |                  |                 | Simula         | ted Delay      | (sec) for e | each Spacir     | ng Level        |                   |                    |
| Movem      | nent  | -1200<br>(3Lead) | -900<br>(3Lead) | -600<br>(3Lag) | -300<br>(3Lag) | 0<br>(4C)   | +300<br>(T3Lag) | +600<br>(T3Lag) | +900<br>(4CSplit) | +1200<br>(4CSplit) |
| Vehicle    |       |                  |                 |                |                |             |                 |                 |                   |                    |
| Main to    | EBT   | 23.2             | 21.8            | 30.1           | 32.0           | 28.0        | 24.3            | 23.2            | 49.3              | 55.7               |
| Main       | WBT   | 21.8             | 20.4            | 18.9           | 19.0           | 26.1        | 28.6            | 28.2            | 31.2              | 31.4               |
| Minor to   | NBT   | 33.6             | 34.8            | 44.1           | 37.6           | 24.7        | 50.2            | 52.9            | 37.9              | 37.2               |
| Minor      | SBT   | 34.2             | 35.0            | 48.3           | 41.8           | 24.5        | 46.9            | 48.0            | 29.0              | 29.5               |
|            | EBL   | 43.4             | 43.4            | 55.6           | 47.7           | 41.2        | 47.1            | 43.9            | 93.6              | 88.8               |
| Main to    | EBR   | 17.4             | 17.3            | 15.9           | 17.6           | 23.8        | 6.3             | 6.2             | 12.3              | 12.2               |
| Minor      | WBL   | 41.3             | 41.5            | 33.5           | 28.9           | 41.9        | 62.4            | 57.6            | 41.6              | 39.3               |
|            | WBR   | 15.4             | 15.6            | 13.9           | 15.1           | 20.2        | 5.8             | 5.8             | 6.0               | 6.2                |
|            | NBL   | 41.6             | 45.5            | 49.1           | 48.8           | 38.5        | 27.4            | 27.4            | 32.9              | 32.9               |
| Minor to   | NBR   | 6.1              | 6.1             | 6.4            | 6.2            | 8.7         | 17.6            | 17.4            | 21.3              | 21.3               |
| Main       | SBL   | 42.6             | 46.2            | 59.4           | 57.2           | 62.9        | 30.3            | 30.2            | 34.0              | 34.0               |
|            | SBR   | 4.2              | 4.4             | 4.2            | 4.2            | 12.8        | 13.7            | 13.4            | 12.3              | 12.0               |
| Bicycle    | -     |                  | -               |                | -              | <u>-</u>    | <u>.</u>        |                 |                   | <u>.</u>           |
| Main to    | EBT   | 13.0             | 13.1            | 19.0           | 20.0           | 18.1        | 18.5            | 17.9            | 27.0              | 26.2               |
| Main       | WBT   | 14.4             | 14.0            | 12.3           | 12.4           | 19.7        | 20.8            | 20.8            | 22.0              | 21.7               |
| Minor to   | NBT   | 18.0             | 18.4            | 26.9           | 23.2           | 20.6        | 21.5            | 22.3            | 25.9              | 26.2               |
| Minor      | SBT   | 17.7             | 18.1            | 26.6           | 24.6           | 19.3        | 23.1            | 23.2            | 28.8              | 28.3               |
|            | EBL   | 18.2             | 18.2            | 27.0           | 22.9           | 53.3        | 50.3            | 40.6            | 32.7              | 33.6               |
| Main to    | EBR   | 0.4              | 0.5             | 1.2            | 1.2            | 1.0         | 0.5             | 0.5             | 1.6               | 1.5                |
| Minor      | WBL   | 19.2             | 19.1            | 26.6           | 23.3           | 53.7        | 59.8            | 50.2            | 51.1              | 43.1               |
|            | WBR   | 0.4              | 0.3             | 1.0            | 1.1            | 2.4         | 1.4             | 1.4             | 1.1               | 1.1                |
|            | NBL   | 20.0             | 23.8            | 30.9           | 34.8           | 51.5        | 22.7            | 22.7            | 28.7              | 28.6               |
| Minor to   | NBR   | 0.7              | 0.7             | 1.8            | 1.4            | 2.5         | 3.2             | 2.1             | 1.6               | 1.8                |
| Main       | SBL   | 20.5             | 23.2            | 32.9           | 34.8           | 49.9        | 23.3            | 23.5            | 27.3              | 27.3               |
|            | SBR   | 0.8              | 0.8             | 1.9            | 1.2            | 1.1         | 0.5             | 0.5             | 0.7               | 0.6                |
| Pedestrian |       | •                | •               |                |                | -           | •               |                 | •                 | •                  |
| Main St.   | Cross | 93.1             | 93.1            | 117.3          | 105.8          | 83.0        | 107.1           | 107.0           | 118.4             | 118.4              |
| Minor St.  | Cross | 84.1             | 84.1            | 102.8          | 92.0           | 83.9        | 93.2            | 93.2            | 102.2             | 101.7              |
| Diagonal   | Cross | 105.7            | 105.7           | 136.5          | 120.1          | 132.0       | 122.1           | 122.1           | 136.5             | 136.5              |

| Table F6: v/c = 0.9; OD Pattern: Superstore |       |                  |                 |                |                |             |                 |                 |                   |                    |  |
|---------------------------------------------|-------|------------------|-----------------|----------------|----------------|-------------|-----------------|-----------------|-------------------|--------------------|--|
|                                             |       |                  |                 | Simula         | ted Delay      | (sec) for e | each Spaciı     | ng Level        |                   |                    |  |
| Movem                                       | ient  | -1200<br>(3Lead) | -900<br>(3Lead) | -600<br>(3Lag) | -300<br>(3Lag) | 0<br>(4C)   | +300<br>(T3Lag) | +600<br>(T3Lag) | +900<br>(4CSplit) | +1200<br>(4CSplit) |  |
| Vehicle                                     |       |                  |                 |                |                |             |                 |                 |                   |                    |  |
| Main to                                     | EBT   | 25.2             | 24.6            | 38.4           | 36.3           | 52.2        | 36.5            | 28.3            | 58.8              | 61.1               |  |
| Main                                        | WBT   | 24.6             | 24.6            | 26.6           | 25.4           | 40.7        | 34.5            | 32.4            | 32.3              | 32.5               |  |
| Minor to                                    | NBT   | 47.8             | 48.4            | 37.7           | 37.8           | 26.0        | 59.7            | 63.5            | 49.5              | 49.0               |  |
| Minor                                       | SBT   | 63.9             | 65.0            | 65.0           | 80.5           | 29.7        | 52.3            | 53.7            | 37.2              | 38.0               |  |
|                                             | EBL   | 58.4             | 58.3            | 54.6           | 54.6           | 78.0        | 65.7            | 57.6            | 115.3             | 109.5              |  |
| Main to                                     | EBR   | 20.0             | 20.6            | 26.4           | 25.0           | 53.6        | 15.4            | 11.8            | 29.8              | 29.5               |  |
| Minor                                       | WBL   | 45.3             | 45.3            | 31.7           | 31.7           | 74.7        | 74.9            | 67.8            | 47.5              | 44.5               |  |
|                                             | WBR   | 19.0             | 20.0            | 20.9           | 20.6           | 36.1        | 12.0            | 11.7            | 10.9              | 11.0               |  |
|                                             | NBL   | 56.2             | 60.2            | 46.7           | 50.8           | 38.6        | 33.5            | 33.3            | 40.3              | 40.4               |  |
| Minor to                                    | NBR   | 8.9              | 8.8             | 8.7            | 8.7            | 10.4        | 23.7            | 21.4            | 25.5              | 25.0               |  |
| Main                                        | SBL   | 72.2             | 76.1            | 74.3           | 92.4           | 157.5       | 39.7            | 39.9            | 46.6              | 46.6               |  |
|                                             | SBR   | 6.2              | 6.3             | 5.7            | 6.5            | 17.7        | 16.0            | 15.6            | 14.3              | 14.5               |  |
| Bicycle                                     |       | -                |                 |                | -              |             |                 |                 | -                 | -                  |  |
| Main to                                     | EBT   | 14.4             | 14.3            | 20.8           | 21.1           | 20.2        | 22.8            | 20.7            | 27.1              | 25.7               |  |
| Main                                        | WBT   | 16.6             | 16.9            | 17.8           | 17.6           | 24.6        | 24.6            | 23.7            | 22.9              | 22.9               |  |
| Minor to                                    | NBT   | 21.8             | 22.9            | 22.5           | 23.7           | 20.6        | 26.6            | 27.9            | 31.8              | 31.5               |  |
| Minor                                       | SBT   | 23.2             | 23.7            | 23.6           | 25.0           | 19.9        | 26.2            | 27.2            | 31.8              | 34.2               |  |
|                                             | EBL   | 22.6             | 22.6            | 22.4           | 22.4           | 57.0        | 58.5            | 49.0            | 36.3              | 34.4               |  |
| Main to                                     | EBR   | 0.7              | 1.0             | 0.8            | 1.3            | 1.2         | 0.7             | 0.7             | 2.1               | 2.1                |  |
| Minor                                       | WBL   | 22.3             | 22.3            | 22.7           | 22.7           | 56.3        | 69.0            | 58.2            | 55.7              | 47.6               |  |
|                                             | WBR   | 0.4              | 0.8             | 0.9            | 1.3            | 3.0         | 1.4             | 1.4             | 1.6               | 1.6                |  |
|                                             | NBL   | 28.5             | 34.9            | 28.2           | 35.3           | 55.6        | 26.7            | 26.3            | 32.1              | 32.0               |  |
| Minor to                                    | NBR   | 0.9              | 0.9             | 1.1            | 1.1            | 2.8         | 5.0             | 3.0             | 2.1               | 2.1                |  |
| Main                                        | SBL   | 26.7             | 31.7            | 28.1           | 34.7           | 51.1        | 27.8            | 27.7            | 30.2              | 30.2               |  |
|                                             | SBR   | 1.3              | 1.3             | 1.3            | 1.3            | 1.0         | 0.9             | 0.8             | 0.9               | 0.8                |  |
| Pedestrian                                  |       |                  |                 |                |                |             |                 |                 |                   |                    |  |
| Main St.                                    | Cross | 105.4            | 105.4           | 106.5          | 106.5          | 82.9        | 119.7           | 119.4           | 130.6             | 130.6              |  |
| Minor St.                                   | Cross | 91.5             | 91.6            | 92.4           | 92.4           | 84.1        | 103.3           | 103.4           | 111.2             | 110.9              |  |
| Diagonal                                    | Cross | 120.6            | 120.6           | 121.1          | 121.2          | 132.0       | 136.8           | 137.0           | 151.3             | 151.4              |  |

| Table F7: v/c = 0.9; OD Pattern: Hybrid Gas Station |       |                  |                 |                |                |             |                 |                 |                   |                    |  |
|-----------------------------------------------------|-------|------------------|-----------------|----------------|----------------|-------------|-----------------|-----------------|-------------------|--------------------|--|
|                                                     |       |                  |                 | Simula         | ted Delay      | (sec) for e | each Spacir     | ng Level        |                   |                    |  |
| Movem                                               | ent   | -1200<br>(3Lead) | -900<br>(3Lead) | -600<br>(3Lag) | -300<br>(3Lag) | 0<br>(4C)   | +300<br>(T3Lag) | +600<br>(T3Lag) | +900<br>(4CSplit) | +1200<br>(4CSplit) |  |
| Vehicle                                             |       |                  |                 |                |                |             |                 |                 |                   |                    |  |
| Main to                                             | EBT   | 24.6             | 24.1            | 25.1           | 24.2           | 157.2       | 24.6            | 24.2            | 64.8              | 66.1               |  |
| Main                                                | WBT   | 22.4             | 22.4            | 30.6           | 30.2           | 33.9        | 51.3            | 47.7            | 28.7              | 29.2               |  |
| Minor to                                            | NBT   | 46.7             | 46.4            | 40.0           | 40.0           | 24.5        | 43.0            | 46.2            | 44.5              | 43.8               |  |
| Minor                                               | SBT   | 46.9             | 47.2            | 42.0           | 42.7           | 23.8        | 54.8            | 55.1            | 32.5              | 33.4               |  |
|                                                     | EBL   | 53.8             | 53.8            | 37.6           | 37.6           | 95.7        | 34.4            | 31.7            | 116.7             | 110.5              |  |
| Main to                                             | EBR   | 18.8             | 19.2            | 19.7           | 19.7           | 164.2       | 10.7            | 10.6            | 36.1              | 34.0               |  |
| Minor                                               | WBL   | 50.7             | 50.7            | 48.6           | 48.5           | 59.7        | 96.7            | 87.4            | 45.8              | 42.1               |  |
| W                                                   | WBR   | 14.9             | 15.3            | 17.1           | 17.6           | 29.7        | 14.4            | 12.5            | 6.8               | 7.0                |  |
|                                                     | NBL   | 60.4             | 64.4            | 54.0           | 58.8           | 41.6        | 33.4            | 33.3            | 40.2              | 40.2               |  |
| Minor to                                            | NBR   | 10.2             | 10.2            | 10.1           | 10.4           | 10.4        | 21.6            | 21.8            | 26.6              | 26.2               |  |
| Main                                                | SBL   | 61.3             | 64.9            | 55.7           | 59.7           | 63.1        | 35.6            | 35.5            | 40.4              | 40.4               |  |
|                                                     | SBR   | 6.0              | 6.0             | 6.2            | 6.4            | 9.1         | 13.6            | 13.0            | 12.1              | 12.0               |  |
| Bicycle                                             |       |                  | -               |                | <u>.</u>       | <u>-</u>    | •               | -               |                   | <u>.</u>           |  |
| Main to                                             | EBT   | 14.5             | 14.3            | 13.7           | 13.9           | 20.1        | 18.8            | 18.2            | 26.3              | 25.1               |  |
| Main                                                | WBT   | 14.5             | 14.4            | 20.3           | 20.6           | 22.2        | 29.6            | 29.3            | 20.7              | 20.9               |  |
| Minor to                                            | NBT   | 26.7             | 27.5            | 28.1           | 30.0           | 20.5        | 25.9            | 27.2            | 31.8              | 31.7               |  |
| Minor                                               | SBT   | 26.7             | 27.4            | 26.7           | 27.5           | 20.1        | 26.0            | 27.8            | 32.4              | 33.7               |  |
|                                                     | EBL   | 27.3             | 27.3            | 27.6           | 27.6           | 54.4        | 54.9            | 45.3            | 35.7              | 33.6               |  |
| Main to                                             | EBR   | 1.3              | 1.3             | 1.2            | 1.4            | 1.2         | 0.5             | 0.5             | 1.7               | 1.7                |  |
| Minor                                               | WBL   | 27.8             | 27.7            | 27.4           | 27.2           | 55.6        | 76.1            | 66.6            | 55.1              | 46.9               |  |
|                                                     | WBR   | 0.4              | 0.7             | 1.2            | 1.5            | 2.7         | 2.1             | 2.1             | 1.3               | 1.3                |  |
|                                                     | NBL   | 30.2             | 35.9            | 31.8           | 38.7           | 54.4        | 27.0            | 26.7            | 32.4              | 32.4               |  |
| Minor to                                            | NBR   | 1.5              | 1.5             | 1.9            | 1.9            | 2.6         | 4.4             | 3.2             | 2.3               | 2.3                |  |
| Main                                                | SBL   | 30.6             | 35.6            | 31.9           | 38.7           | 52.5        | 27.2            | 27.3            | 30.3              | 30.3               |  |
|                                                     | SBR   | 1.9              | 1.9             | 2.0            | 2.0            | 1.2         | 0.8             | 0.7             | 1.0               | 0.9                |  |
| Pedestrian                                          |       | -                | -               |                |                |             |                 |                 |                   |                    |  |
| Main St.                                            | Cross | 118.5            | 118.5           | 118.2          | 118.1          | 83.1        | 118.2           | 118.5           | 131.2             | 131.1              |  |
| Minor St.                                           | Cross | 103.2            | 103.2           | 103.1          | 103.2          | 84.2        | 102.5           | 102.8           | 111.7             | 111.8              |  |
| Diagonal                                            | Cross | 135.7            | 135.6           | 137.0          | 137.0          | 131.7       | 136.9           | 136.8           | 152.0             | 152.0              |  |

| Table F8: v/c = 0.9; OD Pattern: ResAM |       |                    |                   |                |                |             |                 |                 |                   |                    |  |  |
|----------------------------------------|-------|--------------------|-------------------|----------------|----------------|-------------|-----------------|-----------------|-------------------|--------------------|--|--|
| l .                                    |       |                    |                   | Simula         | ted Delay      | (sec) for e | each Spacir     | ng Level        |                   |                    |  |  |
| Movemo                                 | ent   | -1200<br>(LPSplit) | -900<br>(LPSplit) | -600<br>(3Lag) | -300<br>(3Lag) | 0<br>(4C)   | +300<br>(T3Lag) | +600<br>(T3Lag) | +900<br>(4CSplit) | +1200<br>(4CSplit) |  |  |
| Vehicle                                |       |                    |                   |                |                |             |                 |                 |                   |                    |  |  |
| Main to                                | EBT   | 21.6               | 23.8              | 28.1           | 26.6           | 123.7       | 27.9            | 28.0            | 45.3              | 50.6               |  |  |
| Main                                   | WBT   | 18.5               | 18.5              | 24.1           | 24.1           | 26.0        | 75.1            | 48.1            | 143.1             | 129.0              |  |  |
| Minor to                               | NBT   | 61.7               | 61.8              | 49.1           | 57.0           | 22.7        | 34.5            | 37.0            | 28.8              | 28.6               |  |  |
| Minor                                  | SBT   | 49.6               | 48.5              | 39.2           | 39.6           | 33.0        | 62.1            | 61.9            | 34.8              | 39.6               |  |  |
|                                        | EBL   | 68.3               | 68.5              | 37.1           | 37.1           | 77.4        | 39.4            | 35.6            | 81.5              | 75.9               |  |  |
| Main to                                | EBR   | 19.7               | 20.0              | 20.3           | 19.8           | 131.3       | 10.9            | 10.9            | 14.7              | 14.5               |  |  |
| Minor                                  | WBL   | 57.7               | 57.5              | 48.1           | 48.1           | 64.8        | 113.9           | 82.3            | 151.1             | 135.0              |  |  |
|                                        | WBR   | 11.6               | 11.4              | 16.8           | 17.5           | 23.3        | 45.5            | 24.5            | 108.9             | 95.6               |  |  |
|                                        | NBL   | 64.1               | 63.7              | 59.7           | 69.9           | 54.7        | 37.9            | 37.9            | 39.1              | 39.1               |  |  |
| Minor to                               | NBR   | 5.9                | 5.8               | 6.1            | 6.6            | 7.9         | 14.6            | 15.0            | 20.3              | 20.5               |  |  |
| Main                                   | SBL   | 60.1               | 52.6              | 52.0           | 55.3           | 53.9        | 29.2            | 28.9            | 33.1              | 33.1               |  |  |
|                                        | SBR   | 8.0                | 8.4               | 11.2           | 10.6           | 17.3        | 28.8            | 22.5            | 17.1              | 18.0               |  |  |
| Bicycle                                |       |                    |                   |                | <u>.</u>       | <u>-</u>    | <u>.</u>        | -               |                   | -                  |  |  |
| Main to                                | EBT   | 11.7               | 11.3              | 18.1           | 17.9           | 28.2        | 25.0            | 24.5            | 27.3              | 26.4               |  |  |
| Main                                   | WBT   | 6.0                | 6.3               | 10.7           | 10.3           | 15.8        | 18.0            | 17.5            | 21.2              | 21.0               |  |  |
| Minor to                               | NBT   | 33.2               | 33.2              | 26.6           | 27.2           | 20.7        | 26.6            | 27.4            | 25.8              | 26.2               |  |  |
| Minor                                  | SBT   | 35.3               | 36.1              | 27.1           | 28.5           | 27.7        | 27.0            | 27.6            | 28.2              | 27.9               |  |  |
|                                        | EBL   | 35.4               | 35.4              | 27.7           | 27.7           | 57.9        | 61.8            | 53.4            | 32.9              | 34.1               |  |  |
| Main to                                | EBR   | 2.0                | 2.3               | 1.3            | 1.7            | 3.2         | 0.9             | 0.9             | 1.6               | 1.6                |  |  |
| Minor                                  | WBL   | 37.6               | 37.6              | 26.8           | 26.6           | 71.8        | 56.6            | 48.8            | 51.0              | 43.0               |  |  |
|                                        | WBR   | 0.3                | 0.2               | 0.9            | 1.0            | 2.4         | 0.8             | 0.8             | 1.0               | 1.0                |  |  |
|                                        | NBL   | 36.0               | 37.3              | 30.4           | 37.5           | 53.0        | 26.1            | 26.4            | 28.3              | 28.3               |  |  |
| Minor to                               | NBR   | 3.0                | 3.0               | 1.8            | 1.7            | 3.0         | 4.7             | 3.3             | 1.5               | 1.7                |  |  |
| Main                                   | SBL   | 48.7               | 56.5              | 32.9           | 39.6           | 71.5        | 27.0            | 26.8            | 27.3              | 27.3               |  |  |
|                                        | SBR   | 3.2                | 3.2               | 2.1            | 2.1            | 2.8         | 1.0             | 0.9             | 0.7               | 0.6                |  |  |
| Pedestrian                             |       |                    |                   |                |                |             |                 |                 |                   |                    |  |  |
| Main St. C                             | Cross | 143.0              | 143.0             | 119.3          | 119.3          | 103.2       | 119.1           | 118.9           | 118.5             | 118.5              |  |  |
| Minor St.                              | Cross | 123.3              | 123.5             | 103.7          | 103.9          | 102.3       | 103.9           | 103.2           | 101.5             | 101.3              |  |  |
| Diagonal (                             | Cross | 164.0              | 164.0             | 136.3          | 136.4          | 173.5       | 137.2           | 137.2           | 136.4             | 136.4              |  |  |

| Table F9: v/c = 0.9; OD Pattern: ResPM |       |                  |                 |                |                |             |                 |                 |                   |                    |  |
|----------------------------------------|-------|------------------|-----------------|----------------|----------------|-------------|-----------------|-----------------|-------------------|--------------------|--|
|                                        |       |                  |                 | Simula         | ted Delay      | (sec) for e | ach Spacir      | ng Level        |                   |                    |  |
| Movem                                  | ent   | -1200<br>(3Lead) | -900<br>(3Lead) | -600<br>(3Lag) | -300<br>(3Lag) | 0<br>(4C)   | +300<br>(T3Lag) | +600<br>(T3Lag) | +900<br>(4CSplit) | +1200<br>(4CSplit) |  |
| Vehicle                                |       |                  |                 |                |                |             |                 |                 |                   |                    |  |
| Main to                                | EBT   | 23.6             | 22.3            | 24.6           | 23.1           | 214.6       | 24.0            | 23.9            | 173.0             | 151.7              |  |
| Main                                   | WBT   | 19.5             | 18.9            | 37.3           | 37.1           | 24.1        | 83.8            | 75.6            | 32.4              | 32.9               |  |
| Minor to                               | NBT   | 43.3             | 44.3            | 44.1           | 47.4           | 21.1        | 42.9            | 47.6            | 35.3              | 35.3               |  |
| Minor                                  | SBT   | 43.9             | 42.9            | 36.8           | 36.8           | 23.4        | 63.9            | 64.0            | 27.1              | 27.9               |  |
|                                        | EBL   | 52.3             | 52.3            | 27.6           | 27.5           | 138.5       | 30.6            | 28.6            | 208.7             | 177.8              |  |
| Main to                                | EBR   | 18.8             | 18.6            | 20.0           | 19.6           | 222.2       | 11.0            | 11.0            | 135.9             | 109.6              |  |
| Minor                                  | WBL   | 57.8             | 57.8            | 55.4           | 55.2           | 57.2        | 135.4           | 122.7           | 41.8              | 39.6               |  |
|                                        | WBR   | 13.4             | 13.8            | 16.0           | 16.8           | 19.1        | 36.3            | 31.1            | 5.9               | 6.1                |  |
|                                        | NBL   | 54.6             | 58.3            | 56.4           | 63.1           | 45.4        | 34.1            | 34.2            | 35.7              | 35.7               |  |
| Minor to                               | NBR   | 10.5             | 10.3            | 9.9            | 10.7           | 10.0        | 22.2            | 23.2            | 25.7              | 26.1               |  |
| Main                                   | SBL   | 58.5             | 61.9            | 52.3           | 55.4           | 43.2        | 30.9            | 31.0            | 29.2              | 29.2               |  |
|                                        | SBR   | 4.8              | 4.9             | 4.9            | 4.9            | 7.5         | 13.1            | 12.2            | 11.6              | 11.5               |  |
| Bicycle                                |       |                  |                 |                | <u>.</u>       | <u>-</u>    | -               |                 |                   | -                  |  |
| Main to                                | EBT   | 13.6             | 13.1            | 13.2           | 13.7           | 20.2        | 18.3            | 17.5            | 27.0              | 25.9               |  |
| Main                                   | WBT   | 11.5             | 11.5            | 23.1           | 24.2           | 17.5        | 30.5            | 30.6            | 21.3              | 21.1               |  |
| Minor to                               | NBT   | 25.9             | 26.4            | 26.7           | 28.6           | 16.6        | 25.6            | 28.0            | 26.0              | 26.2               |  |
| Minor                                  | SBT   | 26.8             | 27.4            | 26.9           | 28.1           | 20.0        | 25.6            | 27.7            | 28.6              | 28.0               |  |
|                                        | EBL   | 27.5             | 27.4            | 27.5           | 27.5           | 48.0        | 54.6            | 45.1            | 32.5              | 33.6               |  |
| Main to                                | EBR   | 1.1              | 1.3             | 1.0            | 1.4            | 1.2         | 0.6             | 0.6             | 1.5               | 1.4                |  |
| Minor                                  | WBL   | 27.4             | 27.3            | 27.3           | 27.2           | 54.6        | 76.8            | 67.5            | 51.1              | 43.1               |  |
|                                        | WBR   | 0.3              | 0.2             | 1.5            | 1.7            | 2.1         | 2.3             | 2.3             | 1.0               | 1.0                |  |
|                                        | NBL   | 27.7             | 31.4            | 32.5           | 39.3           | 48.7        | 27.4            | 27.3            | 28.6              | 28.6               |  |
| Minor to                               | NBR   | 1.6              | 1.6             | 2.0            | 2.0            | 1.8         | 4.1             | 3.3             | 1.5               | 1.8                |  |
| Main                                   | SBL   | 30.6             | 36.0            | 32.7           | 39.5           | 53.2        | 27.2            | 27.4            | 27.3              | 27.3               |  |
|                                        | SBR   | 2.0              | 2.0             | 2.0            | 2.1            | 1.1         | 0.7             | 0.8             | 0.7               | 0.6                |  |
| Pedestrian                             |       |                  |                 |                |                |             | -               |                 |                   | _                  |  |
| Main St.                               | Cross | 118.1            | 118.1           | 117.8          | 117.9          | 83.2        | 118.3           | 118.3           | 118.5             | 118.5              |  |
| Minor St.                              | Cross | 103.4            | 103.5           | 103.0          | 103.0          | 83.4        | 102.3           | 102.0           | 102.1             | 101.9              |  |
| Diagonal                               | Cross | 136.2            | 136.2           | 136.9          | 136.9          | 131.5       | 136.8           | 137.0           | 136.4             | 136.3              |  |

| Table F10: v/c = 0.9; OD Pattern: Realign |                 |                  |                 |                |                |             |                 |                 |                   |                    |  |  |
|-------------------------------------------|-----------------|------------------|-----------------|----------------|----------------|-------------|-----------------|-----------------|-------------------|--------------------|--|--|
|                                           |                 |                  |                 | Simula         | ted Delay      | (sec) for e | each Spacii     | ng Level        |                   |                    |  |  |
| Movem                                     | ient            | -1200<br>(3Lead) | -900<br>(3Lead) | -600<br>(3Lag) | -300<br>(3Lag) | 0<br>(4C)   | +300<br>(T3Lag) | +600<br>(T3Lag) | +900<br>(4CSplit) | +1200<br>(4CSplit) |  |  |
| Vehicle                                   |                 |                  |                 |                |                |             |                 |                 |                   |                    |  |  |
| Main to                                   | EBT             | 22.6             | 21.8            | 83.7           | 70.1           | 74.9        | 33.0            | 25.0            | 207.5             | 207.8              |  |  |
| Main                                      | WBT             | 21.1             | 20.5            | 22.7           | 21.6           | 30.6        | 34.8            | 33.4            | 34.2              | 34.4               |  |  |
| Minor to                                  | NBT             | 52.3             | 53.9            | 46.6           | 48.4           | 26.2        | 66.2            | 64.7            | 40.6              | 40.1               |  |  |
| Minor                                     | SBT             | 66.2             | 67.9            | 172.4          | 448.7          | 25.9        | 62.9            | 62.2            | 32.6              | 33.7               |  |  |
|                                           | EBL             | 51.0             | 51.0            | 50.4           | 50.4           | 56.6        | 61.0            | 47.7            | 248.0             | 235.9              |  |  |
| Main to                                   | EBR             | 17.4             | 18.0            | 60.1           | 41.9           | 75.7        | 12.5            | 9.5             | 162.6             | 159.5              |  |  |
| Minor                                     | WBL             | 50.5             | 50.6            | 27.4           | 27.3           | 46.5        | 80.6            | 74.1            | 43.3              | 41.2               |  |  |
|                                           | WBR             | 16.4             | 17.3            | 16.0           | 16.3           | 25.2        | 8.8             | 8.7             | 8.8               | 8.8                |  |  |
|                                           | NBL             | 57.3             | 61.1            | 52.1           | 56.0           | 38.9        | 31.7            | 31.6            | 33.7              | 33.7               |  |  |
| Minor to                                  | NBR             | 9.6              | 9.6             | 9.5            | 8.9            | 10.8        | 25.7            | 21.8            | 24.5              | 24.6               |  |  |
| Main                                      | SBL             | 74.3             | 78.2            | 184.7          | 456.7          | 73.9        | 36.9            | 36.9            | 36.0              | 36.0               |  |  |
|                                           | SBR             | 6.1              | 6.2             | 8.1            | 19.0           | 15.4        | 16.3            | 15.6            | 14.6              | 15.0               |  |  |
| Bicycle                                   |                 | -                |                 |                | -              |             | -               |                 | -                 | -                  |  |  |
| Main to                                   | EBT             | 12.5             | 12.1            | 24.2           | 24.0           | 19.5        | 19.2            | 18.6            | 27.2              | 26.6               |  |  |
| Main                                      | WBT             | 13.6             | 13.4            | 14.2           | 13.1           | 21.2        | 22.6            | 22.7            | 23.0              | 22.6               |  |  |
| Minor to                                  | NBT             | 26.6             | 27.2            | 27.1           | 28.5           | 20.4        | 26.2            | 27.9            | 25.8              | 26.0               |  |  |
| Minor                                     | SBT             | 26.1             | 26.6            | 27.0           | 28.5           | 19.4        | 26.1            | 27.7            | 29.0              | 28.5               |  |  |
|                                           | EBL             | 27.4             | 27.4            | 27.4           | 27.6           | 55.7        | 55.4            | 45.9            | 33.1              | 33.7               |  |  |
| Main to                                   | EBR             | 1.1              | 1.2             | 1.7            | 1.9            | 1.2         | 0.7             | 0.7             | 1.6               | 1.6                |  |  |
| Minor                                     | WBL             | 27.9             | 27.8            | 27.4           | 27.3           | 55.0        | 68.4            | 59.0            | 50.8              | 43.1               |  |  |
|                                           | WBR             | 0.4              | 0.7             | 1.0            | 1.2            | 2.6         | 1.3             | 1.2             | 1.3               | 1.2                |  |  |
|                                           | NBL             | 29.6             | 34.8            | 30.6           | 37.1           | 51.7        | 27.1            | 27.0            | 28.8              | 28.9               |  |  |
| Minor to                                  | NBR             | 1.6              | 1.6             | 1.8            | 1.8            | 2.7         | 4.3             | 3.2             | 1.5               | 1.7                |  |  |
| Main                                      | SBL             | 29.2             | 33.2            | 33.2           | 40.4           | 50.0        | 27.5            | 27.3            | 26.9              | 26.9               |  |  |
|                                           | SBR             |                  | 1.9             | 2.0            | 2.1            | 1.0         | 0.7             | 0.8             | 0.6               | 0.6                |  |  |
| Pedestrian                                |                 |                  |                 |                |                |             |                 |                 |                   |                    |  |  |
| Main St.                                  | Cross           | 119.3            | 119.3           | 117.6          | 117.5          | 82.6        | 118.4           | 118.4           | 118.7             | 118.7              |  |  |
| Minor St.                                 | Minor St. Cross |                  | 102.5           | 102.8          | 102.7          | 83.2        | 102.2           | 102.2           | 102.3             | 101.9              |  |  |
| Diagonal                                  | Cross           | 135.5            | 135.6           | 137.2          | 137.4          | 131.3       | 136.9           | 136.8           | 137.1             | 137.1              |  |  |

## Appendix E. Analysis of Variance (ANOVA) of Recommendations

The Analysis of Variance (ANOVA) statistical test was applied on the delay measure of several key movements (i.e., major street through and left turn movements) to verify that the recommended offset T-intersection configurations outperforms a regular 4-Leg intersection. Testing results for each development scenario are presented below.

| Appendix E1. Superstore (LR offset with a spacing of 900 ft.) |       |                      |       |              |                     |       |                      |       |                     |  |  |
|---------------------------------------------------------------|-------|----------------------|-------|--------------|---------------------|-------|----------------------|-------|---------------------|--|--|
| v/a Datia                                                     | Delay | EBT                  |       | EE           | EBL                 |       | WBT                  |       | BL                  |  |  |
| v/c Ratio                                                     | Delay | LR                   | 4-Leg | LR           | 4-Leg               | LR    | 4-Leg                | LR    | 4-Leg               |  |  |
| 0.7                                                           | Avg   | 20.73                | 26.9  | 46.23        | 57.15               | 23.83 | 33.16                | 41.38 | 46.69               |  |  |
|                                                               | S.D.  | 0.88                 | 1.45  | 4.28         | 5.85                | 1.47  | 1.39                 | 3.36  | 2.92                |  |  |
|                                                               | ANOVA | F=397.236<br>P=0.000 |       | F=68<br>P=0. |                     |       | F=638.032<br>P=0.000 |       | .687<br>000         |  |  |
|                                                               | Avg   | 24.61                | 52.16 | 58.3         | 78                  | 24.58 | 40.67                | 45.29 | 74.68               |  |  |
| 0.9                                                           | S.D.  | 1.03                 | 13.29 | 7.32         | 19.38               | 0.87  | 4.08                 | 2.45  | 21.65               |  |  |
| 0.5                                                           | ANOVA | F=128<br>P=0.0       |       |              | F=27.129<br>P=0.000 |       | F=446.274<br>P=0.000 |       | F=54.586<br>P=0.000 |  |  |

| Appendix E2: Hybrid Gas Station (LR offset with a spacing of 300 ft.) |       |                      |        |                |                      |                 |                     |                     |                     |  |
|-----------------------------------------------------------------------|-------|----------------------|--------|----------------|----------------------|-----------------|---------------------|---------------------|---------------------|--|
| /a Datia                                                              | Delay | EBT                  |        | EB             | EBL                  |                 | WBT                 |                     | WBL                 |  |
| v/c Ratio                                                             | Delay | LR                   | 4-Leg  | LR             | 4-Leg                | LR              | 4-Leg               | LR                  | 4-Leg               |  |
|                                                                       | Avg   | 22.87                | 31.32  | 59.12          | 41.31                | 23.72           | 30.02               | 57.18               | 47.48               |  |
| 0.7                                                                   | S.D.  | 0.97                 | 2.25   | 10.74          | 1.95                 | 0.91            | 1.37                | 13.42               | 5.92                |  |
|                                                                       | ANOVA | F=356.810<br>P=0.000 |        | F=79.<br>P=0.0 |                      | F=440.<br>P=0.0 |                     | F=13.120<br>P=0.001 |                     |  |
|                                                                       | Avg   | 24.18                | 157.23 | 37.62          | 95.65                | 30.18           | 33.88               | 48.48               | 59.74               |  |
| 0.9                                                                   | S.D.  | 1.22                 | 41.07  | 2.67           | 29.28                | 1.78            | 1.86                | 2.88                | 9.73                |  |
|                                                                       | ANOVA | F=314<br>P=0.0       |        | -              | F=116.866<br>P=0.000 |                 | F=61.964<br>P=0.000 |                     | F=36.940<br>P=0.000 |  |

Note: Cells highlighted in yellow means 4-Leg intersection outperforms Offset T-Intersection

| Appendix  | Appendix E3: Residential Area AM Period (LR offset with a spacing of 600 ft.) |                      |        |                     |       |                     |                    |                     |            |  |  |  |
|-----------|-------------------------------------------------------------------------------|----------------------|--------|---------------------|-------|---------------------|--------------------|---------------------|------------|--|--|--|
|           | Dalau                                                                         | EBT                  |        | EB                  | EBL   |                     | WBT                |                     | SL.        |  |  |  |
| v/c Ratio | Delay                                                                         | LR                   | 4-Leg  | LR                  | 4-Leg | LR                  | 4-Leg              | LR                  | 4-Leg      |  |  |  |
|           | Avg                                                                           | 23.94                | 34.74  | 33.06               | 49.03 | 23.87               | 22.92              | 53.03               | 63.55      |  |  |  |
| 0.7       | S.D.                                                                          | 0.81                 | 1.92   | 5.89                | 8.44  | 2.43                | 0.85               | 7.63                | 14.76      |  |  |  |
|           | ANOVA                                                                         | F=805.803<br>P=0.000 |        | F=72.<br>P=0.0      | -     | -                   | F=4.084<br>P=0.048 |                     | 026<br>)01 |  |  |  |
|           | Avg                                                                           | 28.15                | 123.71 | 37.1                | 77.37 | 24.07               | 25.99              | 48.1                | 64.85      |  |  |  |
| 0.9       | S.D.                                                                          | 1.03                 | 50.66  | 7.65                | 26.08 | 1.88                | 1.18               | 7.64                | 11.68      |  |  |  |
| 0.5       | ANOVA                                                                         | F=106<br>P=0.0       |        | F=65.860<br>P=0.000 |       | F=22.447<br>P=0.000 |                    | F=48.523<br>P=0.000 |            |  |  |  |

| Appendix  | Appendix E4: Residential Area AM Period (LR offset with a spacing of 600 ft.) |                      |        |                |                      |                |                     |                    |                      |  |  |  |
|-----------|-------------------------------------------------------------------------------|----------------------|--------|----------------|----------------------|----------------|---------------------|--------------------|----------------------|--|--|--|
| /a Datia  | Delevi                                                                        | EBT                  |        | EB             | EBL                  |                | WBT                 |                    | iL                   |  |  |  |
| v/c Ratio | Delay                                                                         | LR                   | 4-Leg  | LR             | 4-Leg                | LR             | 4-Leg               | LR                 | 4-Leg                |  |  |  |
|           | Avg                                                                           | 22.53                | 37.73  | 35.8           | 40.79                | 23.74          | 24.41               | 48.59              | 50.74                |  |  |  |
| 0.7       | S.D.                                                                          | 0.77                 | 4.31   | 3.39           | 3.38                 | 0.94           | 1.34                | 3.63               | 5.95                 |  |  |  |
|           | ANOVA                                                                         | F=361.584<br>P=0.000 |        | F=32.<br>P=0.0 |                      | F=5.0<br>P=0.0 |                     | F=2.855<br>P=0.096 |                      |  |  |  |
|           | Avg                                                                           | 83.68                | 214.65 | 50.42          | 138.53               | 22.68          | 24.11               | 27.43              | 57.17                |  |  |  |
| 0.9       | S.D.                                                                          | 16.21                | 25.23  | 3.15           | 21.88                | 1.46           | 1.41                | 3.5                | 10.01                |  |  |  |
| 0.0       | ANOVA                                                                         | F=572<br>P=0.0       |        | -              | F=476.615<br>P=0.000 |                | F=14.891<br>P=0.000 |                    | F=235.963<br>P=0.000 |  |  |  |

| Appendix E5: Realign (LR offset with a spacing of 900 ft.) |        |                      |       |       |                    |       |                       |       |                     |  |
|------------------------------------------------------------|--------|----------------------|-------|-------|--------------------|-------|-----------------------|-------|---------------------|--|
|                                                            | Dalari | EBT                  |       | EB    | EBL                |       | WBT                   |       | BL                  |  |
| v/c Ratio                                                  | Delay  | LR                   | 4-Leg | LR    | 4-Leg              | LR    | 4-Leg                 | LR    | 4-Leg               |  |
| 0.7                                                        | Avg    | 21.78                | 28.05 | 43.41 | 41.21              | 20.41 | 26.1                  | 41.48 | 41.94               |  |
|                                                            | S.D.   | 1.01                 | 1.54  | 3.21  | 2.51               | 0.86  | 1.18                  | 2.62  | 2.93                |  |
|                                                            | ANOVA  | F=347.727<br>P=0.000 |       |       | F=8.745<br>P=0.004 |       | F=455.574<br>P=0.000  |       | 411<br>524          |  |
|                                                            | Avg    | 21.79                | 74.87 | 51.03 | 56.6               | 20.54 | 30.61                 | 50.56 | 46.55               |  |
| 0.9                                                        | S.D.   | 1.03                 | 31.72 | 2.65  | 15.15              | 0.97  | 1.31                  | 3.71  | 4.32                |  |
|                                                            | ANOVA  | F=83.<br>P=0.0       |       |       | F=3.935<br>P=0.052 |       | F=1144.956<br>P=0.000 |       | F=14.877<br>P=0.000 |  |

Note: Cells highlighted in yellow means 4-Leg intersection outperforms Offset T-Intersection; red numbers mean the difference is not significant at the 0.05 significance level.